基于可变遗忘因子自适应滤波的极运动预测

S. Jia, Tianhe Xu, Honglei Yang
{"title":"基于可变遗忘因子自适应滤波的极运动预测","authors":"S. Jia, Tianhe Xu, Honglei Yang","doi":"10.1109/CPGPS.2017.8075133","DOIUrl":null,"url":null,"abstract":"The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar motion prediction based on adaptive filtering of variable forgetting factor\",\"authors\":\"S. Jia, Tianhe Xu, Honglei Yang\",\"doi\":\"10.1109/CPGPS.2017.8075133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.\",\"PeriodicalId\":340067,\"journal\":{\"name\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPGPS.2017.8075133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极动(PM)是地球自转参数(ERP)的重要参数,极动的高精度预测在自主定轨、大地测量、导航和航空等应用中起着关键作用。本文提出了一种基于最小二乘法和自回归模型(LS+AR)相结合的改进算法来提高PM的预测精度。为了修正LS拟合项和预测外推量,提出了一种可变遗忘因子的自适应滤波方法,称为LS+AR+AF算法。数值结果表明,LS+AR+AF算法可以显著提高PM的预测精度,特别是对于长期预测。LS+AR+AF算法对PM X分量、PM Y分量和总PM的360天预测精度提高分别达到30.66%、28.19%和29.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polar motion prediction based on adaptive filtering of variable forgetting factor
The Polar Motion (PM) is the important parameter of Earth Rotation Parameters (ERP), and the high-precision prediction of PM plays a key role in the applications of autonomous orbit determination, the geodetic survey, navigation and aviation. In this paper, a modified algorithm is proposed to improve the PM prediction accuracy based on combination of Least Square and Autoregressive Model (LS+AR). An adaptive filtering of variable forgetting factor is developed to amend the LS fitting terms and predict extrapolations, which is named LS+AR+AF algorithm. The numerical results show that LS+AR+AF algorithm can significantly enhance the prediction accuracy of PM, especially for the long-term perdition. The accuracy improvement of 360-day prediction for PM X component, PM Y component and total PM can reach 30.66%, 28.19% and 29.59% respectively, when using LS+AR+AF algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on underwater sound velocity calculation, error correction and positioning algorithms An optimal weighted least squares RAIM algorithm Survey on cyber security of CAV A position self-calibration method in multilateration The application of MEMS GPS receiver in APOD precise orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1