Sergio Moreschini, G. Scrofani, R. Bregović, G. Saavedra, A. Gotchev
{"title":"连续重聚焦的积分显微镜与傅里叶平面记录","authors":"Sergio Moreschini, G. Scrofani, R. Bregović, G. Saavedra, A. Gotchev","doi":"10.23919/EUSIPCO.2018.8553138","DOIUrl":null,"url":null,"abstract":"Integral or light field imaging is an attractive approach in microscopy, as it allows to capture 3D samples in just one shot and explore them later through changing the focus on particular depth planes of interest. However, it requires a compromise between spatial and angular resolution on the 2D sensor recording the microscopic images. A particular setting called Fourier Integral Microscope (FIMic) allows maximizing the spatial resolution for the cost of reducing the angular one. In this work, we propose a technique, which aims at reconstructing the continuous light field from sparse FIMic measurements, thus providing the functionality of continuous refocus on any arbitrary depth plane. Our main tool is the densely-sampled light field reconstruction in shearlet domain specifically tailored for the case of FIMic. The experiments demonstrate that the implemented technique yields better results compared to refocusing sparsely-sampled data.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"99 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Refocusing for Integral Microscopy with Fourier Plane Recording\",\"authors\":\"Sergio Moreschini, G. Scrofani, R. Bregović, G. Saavedra, A. Gotchev\",\"doi\":\"10.23919/EUSIPCO.2018.8553138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integral or light field imaging is an attractive approach in microscopy, as it allows to capture 3D samples in just one shot and explore them later through changing the focus on particular depth planes of interest. However, it requires a compromise between spatial and angular resolution on the 2D sensor recording the microscopic images. A particular setting called Fourier Integral Microscope (FIMic) allows maximizing the spatial resolution for the cost of reducing the angular one. In this work, we propose a technique, which aims at reconstructing the continuous light field from sparse FIMic measurements, thus providing the functionality of continuous refocus on any arbitrary depth plane. Our main tool is the densely-sampled light field reconstruction in shearlet domain specifically tailored for the case of FIMic. The experiments demonstrate that the implemented technique yields better results compared to refocusing sparsely-sampled data.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"99 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous Refocusing for Integral Microscopy with Fourier Plane Recording
Integral or light field imaging is an attractive approach in microscopy, as it allows to capture 3D samples in just one shot and explore them later through changing the focus on particular depth planes of interest. However, it requires a compromise between spatial and angular resolution on the 2D sensor recording the microscopic images. A particular setting called Fourier Integral Microscope (FIMic) allows maximizing the spatial resolution for the cost of reducing the angular one. In this work, we propose a technique, which aims at reconstructing the continuous light field from sparse FIMic measurements, thus providing the functionality of continuous refocus on any arbitrary depth plane. Our main tool is the densely-sampled light field reconstruction in shearlet domain specifically tailored for the case of FIMic. The experiments demonstrate that the implemented technique yields better results compared to refocusing sparsely-sampled data.