基于卷积神经网络的时间序列数据未知模式检测方法

J. Bao, Xinyi Li
{"title":"基于卷积神经网络的时间序列数据未知模式检测方法","authors":"J. Bao, Xinyi Li","doi":"10.1109/IICSPI48186.2019.9095913","DOIUrl":null,"url":null,"abstract":"Exploration on the time series data in unknown model pattern recognition has important research significance. This paper proposes an unknown pattern detection method for time-series data based on convolution neural network, which planifies the output results by transforming fully connection layer and softmax layer of the traditional convolutional neural network, and uses the coordinate point and Euclidean distance to determine whether the timing series data belongs to the known pattern or the unknown pattern. Experiments show that the method in this paper can effectively detect the time-series data of unknown patterns and has certain accuracy.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unknown Pattern Detection Method for Time Series Data Based on Convolutional Neural Network\",\"authors\":\"J. Bao, Xinyi Li\",\"doi\":\"10.1109/IICSPI48186.2019.9095913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploration on the time series data in unknown model pattern recognition has important research significance. This paper proposes an unknown pattern detection method for time-series data based on convolution neural network, which planifies the output results by transforming fully connection layer and softmax layer of the traditional convolutional neural network, and uses the coordinate point and Euclidean distance to determine whether the timing series data belongs to the known pattern or the unknown pattern. Experiments show that the method in this paper can effectively detect the time-series data of unknown patterns and has certain accuracy.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

探索时间序列数据在未知模型模式识别中的应用具有重要的研究意义。本文提出了一种基于卷积神经网络的时间序列数据未知模式检测方法,通过对传统卷积神经网络的全连接层和softmax层进行变换,将输出结果进行放大,利用坐标点和欧氏距离来判断时序数据属于已知模式还是未知模式。实验表明,该方法能够有效地检测出未知模式的时间序列数据,并具有一定的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Unknown Pattern Detection Method for Time Series Data Based on Convolutional Neural Network
Exploration on the time series data in unknown model pattern recognition has important research significance. This paper proposes an unknown pattern detection method for time-series data based on convolution neural network, which planifies the output results by transforming fully connection layer and softmax layer of the traditional convolutional neural network, and uses the coordinate point and Euclidean distance to determine whether the timing series data belongs to the known pattern or the unknown pattern. Experiments show that the method in this paper can effectively detect the time-series data of unknown patterns and has certain accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Analysis and Design of System of Experimental Consumables Based on Django and QR code Analysis and Research on the Characteristics of Boiled Yolk based on Hyperspectral Remote Sensing Images Density Peaks Spatial Clustering by Grid Neighborhood Search Modeling of Superheated Steam Temperature Characteristics Based on Fireworks Algorithm Optimized Extreme Learning Machine Fusion Chaotic Prediction Model for Bearing Performance by Computer Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1