基于卷积神经网络的医学图像融合方法

Yu Liu, Xun Chen, Juan Cheng, Hu Peng
{"title":"基于卷积神经网络的医学图像融合方法","authors":"Yu Liu, Xun Chen, Juan Cheng, Hu Peng","doi":"10.23919/ICIF.2017.8009769","DOIUrl":null,"url":null,"abstract":"Medical image fusion technique plays an an increasingly critical role in many clinical applications by deriving the complementary information from medical images with different modalities. In this paper, a medical image fusion method based on convolutional neural networks (CNNs) is proposed. In our method, a siamese convolutional network is adopted to generate a weight map which integrates the pixel activity information from two source images. The fusion process is conducted in a multi-scale manner via image pyramids to be more consistent with human visual perception. In addition, a local similarity based strategy is applied to adaptively adjust the fusion mode for the decomposed coefficients. Experimental results demonstrate that the proposed method can achieve promising results in terms of both visual quality and objective assessment.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":"{\"title\":\"A medical image fusion method based on convolutional neural networks\",\"authors\":\"Yu Liu, Xun Chen, Juan Cheng, Hu Peng\",\"doi\":\"10.23919/ICIF.2017.8009769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image fusion technique plays an an increasingly critical role in many clinical applications by deriving the complementary information from medical images with different modalities. In this paper, a medical image fusion method based on convolutional neural networks (CNNs) is proposed. In our method, a siamese convolutional network is adopted to generate a weight map which integrates the pixel activity information from two source images. The fusion process is conducted in a multi-scale manner via image pyramids to be more consistent with human visual perception. In addition, a local similarity based strategy is applied to adaptively adjust the fusion mode for the decomposed coefficients. Experimental results demonstrate that the proposed method can achieve promising results in terms of both visual quality and objective assessment.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"228\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 228

摘要

医学图像融合技术通过从不同形态的医学图像中提取互补信息,在许多临床应用中发挥着越来越重要的作用。提出了一种基于卷积神经网络(cnn)的医学图像融合方法。在我们的方法中,采用连体卷积网络生成一个权重图,该权重图集成了来自两个源图像的像素活动信息。融合过程通过图像金字塔进行多尺度的融合,更符合人的视觉感知。此外,采用局部相似度策略自适应调整分解系数的融合模式。实验结果表明,该方法在视觉质量和客观评价方面都取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A medical image fusion method based on convolutional neural networks
Medical image fusion technique plays an an increasingly critical role in many clinical applications by deriving the complementary information from medical images with different modalities. In this paper, a medical image fusion method based on convolutional neural networks (CNNs) is proposed. In our method, a siamese convolutional network is adopted to generate a weight map which integrates the pixel activity information from two source images. The fusion process is conducted in a multi-scale manner via image pyramids to be more consistent with human visual perception. In addition, a local similarity based strategy is applied to adaptively adjust the fusion mode for the decomposed coefficients. Experimental results demonstrate that the proposed method can achieve promising results in terms of both visual quality and objective assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1