{"title":"胸部x线报告异常检测的自适应SVM模型","authors":"A. Ìyàndá, Omolara Aminat Ogungbe, A. Aderibigbe","doi":"10.1109/ITED56637.2022.10051548","DOIUrl":null,"url":null,"abstract":"In Nigeria, prose format is used to present and perform analysis on chest x-ray reports and this often results in delayed response from the clinicians. Therefore, with a view to developing a system for analyzing chest x-ray reports for diagnosing cardiomegaly, linear support vector machine algorithm was utilized to formulate an adaptable model with a train-test split of 70:30 for six hundred and fifty (650) de-identified patients' information. Attributes relevant to cardiomegaly from the collected dataset were extracted using Term frequency/inverse document frequency technique. This work provides an adequate requirement for diagnosis design with accuracy of 93.69%. Its implementation in software application has the potential to reduce delay in attending to patients and can also help the clinicians focus on the findings from chest x-ray reports.","PeriodicalId":246041,"journal":{"name":"2022 5th Information Technology for Education and Development (ITED)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptable SVM Model for Abnormalities Detection in Chest X-ray Reports\",\"authors\":\"A. Ìyàndá, Omolara Aminat Ogungbe, A. Aderibigbe\",\"doi\":\"10.1109/ITED56637.2022.10051548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Nigeria, prose format is used to present and perform analysis on chest x-ray reports and this often results in delayed response from the clinicians. Therefore, with a view to developing a system for analyzing chest x-ray reports for diagnosing cardiomegaly, linear support vector machine algorithm was utilized to formulate an adaptable model with a train-test split of 70:30 for six hundred and fifty (650) de-identified patients' information. Attributes relevant to cardiomegaly from the collected dataset were extracted using Term frequency/inverse document frequency technique. This work provides an adequate requirement for diagnosis design with accuracy of 93.69%. Its implementation in software application has the potential to reduce delay in attending to patients and can also help the clinicians focus on the findings from chest x-ray reports.\",\"PeriodicalId\":246041,\"journal\":{\"name\":\"2022 5th Information Technology for Education and Development (ITED)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th Information Technology for Education and Development (ITED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITED56637.2022.10051548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Information Technology for Education and Development (ITED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITED56637.2022.10051548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptable SVM Model for Abnormalities Detection in Chest X-ray Reports
In Nigeria, prose format is used to present and perform analysis on chest x-ray reports and this often results in delayed response from the clinicians. Therefore, with a view to developing a system for analyzing chest x-ray reports for diagnosing cardiomegaly, linear support vector machine algorithm was utilized to formulate an adaptable model with a train-test split of 70:30 for six hundred and fifty (650) de-identified patients' information. Attributes relevant to cardiomegaly from the collected dataset were extracted using Term frequency/inverse document frequency technique. This work provides an adequate requirement for diagnosis design with accuracy of 93.69%. Its implementation in software application has the potential to reduce delay in attending to patients and can also help the clinicians focus on the findings from chest x-ray reports.