缺少样本情况下FDA-MIMO雷达的降维子空间探测器设计

Bang Huang, Wen-qin Wang, Weijian Liu, Mingcheng Fu, Zhi Zheng
{"title":"缺少样本情况下FDA-MIMO雷达的降维子空间探测器设计","authors":"Bang Huang, Wen-qin Wang, Weijian Liu, Mingcheng Fu, Zhi Zheng","doi":"10.1109/RadarConf2351548.2023.10149614","DOIUrl":null,"url":null,"abstract":"This paper focuses on the detection of a point-like target in sample-starved environments with Gaussian interference, which includes strong main-lobe interference and weak thermal noise for frequency diverse array multiple-input multiple-output (FDA-MIMO) radar. At the design stage, the target signature is only partially known and assumed to lie in a known subspace. To solve the sample-starved problem, we adopt a reduced-dimension method to decrease the requirement of training data via pre-multiplying test and training data by a suitable matrix representing the signal subspace. Then, the generalized likelihood ratio test criterion is applied to come up with a reduced-dimension subspace detector. Numerical results validate the effectiveness of proposed detector.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced-dimension Subspace Detector Design for FDA-MIMO Radar in Sample-starved Scenarios\",\"authors\":\"Bang Huang, Wen-qin Wang, Weijian Liu, Mingcheng Fu, Zhi Zheng\",\"doi\":\"10.1109/RadarConf2351548.2023.10149614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the detection of a point-like target in sample-starved environments with Gaussian interference, which includes strong main-lobe interference and weak thermal noise for frequency diverse array multiple-input multiple-output (FDA-MIMO) radar. At the design stage, the target signature is only partially known and assumed to lie in a known subspace. To solve the sample-starved problem, we adopt a reduced-dimension method to decrease the requirement of training data via pre-multiplying test and training data by a suitable matrix representing the signal subspace. Then, the generalized likelihood ratio test criterion is applied to come up with a reduced-dimension subspace detector. Numerical results validate the effectiveness of proposed detector.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了分频阵列多输入多输出(fad - mimo)雷达在具有强主瓣干扰和弱热噪声的高斯干扰环境下的点目标检测问题。在设计阶段,目标签名只是部分已知的,并且假设它位于已知的子空间中。为了解决样本匮乏的问题,我们采用降维方法,将测试和训练数据用合适的表示信号子空间的矩阵进行预乘,从而减少对训练数据的需求。然后,应用广义似然比检验准则提出了一种降维子空间检测器。数值结果验证了该检测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced-dimension Subspace Detector Design for FDA-MIMO Radar in Sample-starved Scenarios
This paper focuses on the detection of a point-like target in sample-starved environments with Gaussian interference, which includes strong main-lobe interference and weak thermal noise for frequency diverse array multiple-input multiple-output (FDA-MIMO) radar. At the design stage, the target signature is only partially known and assumed to lie in a known subspace. To solve the sample-starved problem, we adopt a reduced-dimension method to decrease the requirement of training data via pre-multiplying test and training data by a suitable matrix representing the signal subspace. Then, the generalized likelihood ratio test criterion is applied to come up with a reduced-dimension subspace detector. Numerical results validate the effectiveness of proposed detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1