基于情感分类的购物网站用户评价LSTM

Rong Xiao, Xiaohui Cui, Peipei Zhou, Wanfeng Ge
{"title":"基于情感分类的购物网站用户评价LSTM","authors":"Rong Xiao, Xiaohui Cui, Peipei Zhou, Wanfeng Ge","doi":"10.1109/IIKI.2016.77","DOIUrl":null,"url":null,"abstract":"The user evaluation of shopping websites always has huge amounts of data which is a waste of manpower and material resources. Aiming at this problem, this paper puts forward a model based on LSTM and word vectors [1]. LSTM can be a very good solution because of the long distance learning of the neural nodes to forward neural nodes of declining awareness, thus LSTM neural network model can be better to finish the task of user sentiment analysis.","PeriodicalId":371106,"journal":{"name":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM Based on the Classification of Emotion about User Evaluation on Shopping Site\",\"authors\":\"Rong Xiao, Xiaohui Cui, Peipei Zhou, Wanfeng Ge\",\"doi\":\"10.1109/IIKI.2016.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The user evaluation of shopping websites always has huge amounts of data which is a waste of manpower and material resources. Aiming at this problem, this paper puts forward a model based on LSTM and word vectors [1]. LSTM can be a very good solution because of the long distance learning of the neural nodes to forward neural nodes of declining awareness, thus LSTM neural network model can be better to finish the task of user sentiment analysis.\",\"PeriodicalId\":371106,\"journal\":{\"name\":\"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIKI.2016.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIKI.2016.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

购物网站的用户评价总是有大量的数据,这是一种人力物力的浪费。针对这一问题,本文提出了一种基于LSTM和词向量的模型[1]。LSTM可以是一个很好的解决方案,因为LSTM神经网络模型可以远程学习神经节点转发意识下降的神经节点,因此LSTM神经网络模型可以更好地完成用户情感分析的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM Based on the Classification of Emotion about User Evaluation on Shopping Site
The user evaluation of shopping websites always has huge amounts of data which is a waste of manpower and material resources. Aiming at this problem, this paper puts forward a model based on LSTM and word vectors [1]. LSTM can be a very good solution because of the long distance learning of the neural nodes to forward neural nodes of declining awareness, thus LSTM neural network model can be better to finish the task of user sentiment analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Evaluation of Product Quality Perceived Value Based on Text Mining and Fuzzy Comprehensive Evaluation A New Pre-copy Strategy for Live Migration of Virtual Machines Hbase Based Surveillance Video Processing, Storage and Retrieval Mutual Information-Based Feature Selection and Ensemble Learning for Classification Implicit Correlation Intensity Mining Based on the Monte Carlo Method with Attenuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1