近似熵的复杂度

Tugkan Batu, S. Dasgupta, Ravi Kumar, R. Rubinfeld
{"title":"近似熵的复杂度","authors":"Tugkan Batu, S. Dasgupta, Ravi Kumar, R. Rubinfeld","doi":"10.1145/509907.510005","DOIUrl":null,"url":null,"abstract":"The Shannon entropy is a measure of the randomness of a distribution, and plays a central role in statistics, information theory, and data compression. Knowing the entropy of a random source can shed light on the compressibility of data produced by such a source. We consider the complexity of approximating the entropy under various different assumptions on the way the input is presented.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":"{\"title\":\"The complexity of approximating the entropy\",\"authors\":\"Tugkan Batu, S. Dasgupta, Ravi Kumar, R. Rubinfeld\",\"doi\":\"10.1145/509907.510005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Shannon entropy is a measure of the randomness of a distribution, and plays a central role in statistics, information theory, and data compression. Knowing the entropy of a random source can shed light on the compressibility of data produced by such a source. We consider the complexity of approximating the entropy under various different assumptions on the way the input is presented.\",\"PeriodicalId\":193513,\"journal\":{\"name\":\"Proceedings 17th IEEE Annual Conference on Computational Complexity\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"181\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th IEEE Annual Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/509907.510005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/509907.510005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

摘要

香农熵是衡量分布随机性的一种方法,在统计学、信息论和数据压缩中起着核心作用。了解随机源的熵可以阐明由这种源产生的数据的可压缩性。我们考虑了在各种不同的输入方式的假设下近似熵的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The complexity of approximating the entropy
The Shannon entropy is a measure of the randomness of a distribution, and plays a central role in statistics, information theory, and data compression. Knowing the entropy of a random source can shed light on the compressibility of data produced by such a source. We consider the complexity of approximating the entropy under various different assumptions on the way the input is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learnability beyond AC/sup 0/ Pseudo-random generators and structure of complete degrees Better lower bounds for locally decodable codes Arthur and Merlin in a quantum world Information theory methods in communication complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1