基于人工神经网络分类的植物叶片识别

P. G K, Virupakshaiah H K, B. P. T., A. Karegowda, Tejaswini K M, K. K.
{"title":"基于人工神经网络分类的植物叶片识别","authors":"P. G K, Virupakshaiah H K, B. P. T., A. Karegowda, Tejaswini K M, K. K.","doi":"10.1109/ICERECT56837.2022.10060430","DOIUrl":null,"url":null,"abstract":"The state-of-the-art method to find the pictographic four types of foliage (flower, fruit, medical and tree) identification is proposed. Foliage is represented by a boundary of local feature using edge detection, followed by applying convex hull algorithm. In the second phase, ANN has been applied for simulating the system using the features identified in first phase. The proposed work resulted in an average identification rate of 96.75% and 94% with training and test data.","PeriodicalId":205485,"journal":{"name":"2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant foliage Recognition based on Classification using Artificial Neural Network\",\"authors\":\"P. G K, Virupakshaiah H K, B. P. T., A. Karegowda, Tejaswini K M, K. K.\",\"doi\":\"10.1109/ICERECT56837.2022.10060430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state-of-the-art method to find the pictographic four types of foliage (flower, fruit, medical and tree) identification is proposed. Foliage is represented by a boundary of local feature using edge detection, followed by applying convex hull algorithm. In the second phase, ANN has been applied for simulating the system using the features identified in first phase. The proposed work resulted in an average identification rate of 96.75% and 94% with training and test data.\",\"PeriodicalId\":205485,\"journal\":{\"name\":\"2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICERECT56837.2022.10060430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICERECT56837.2022.10060430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了最先进的寻找象形四种叶(花、果、医、树)识别的方法。采用边缘检测的局部特征边界来表示树叶,然后应用凸包算法。在第二阶段,利用第一阶段识别的特征,应用人工神经网络对系统进行模拟。训练数据和测试数据的平均识别率分别为96.75%和94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant foliage Recognition based on Classification using Artificial Neural Network
The state-of-the-art method to find the pictographic four types of foliage (flower, fruit, medical and tree) identification is proposed. Foliage is represented by a boundary of local feature using edge detection, followed by applying convex hull algorithm. In the second phase, ANN has been applied for simulating the system using the features identified in first phase. The proposed work resulted in an average identification rate of 96.75% and 94% with training and test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research of Computer Simulation based on Digital Design in the Design Application A Novel Study on EVs Smart Charging Optimization Modelling of Eye Blink Monitoring Mechanism utilizing ML Techniques Performance Evaluation of a Network on Chip Based on Ghz Throughput and Low Power for Streaming Data Transmission on FPGA Way Forward to Digital Society – Digital Transformation of Msmes from Industry 4.0 to Industry 5.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1