利用高光谱图像识别植被土地覆盖

J. Cipar, T. Cooley, R. Lockwood
{"title":"利用高光谱图像识别植被土地覆盖","authors":"J. Cipar, T. Cooley, R. Lockwood","doi":"10.1109/WARSD.2003.1295181","DOIUrl":null,"url":null,"abstract":"We use AVIRIS data collected at Fort A. P. Hill, Virginia, to evaluate how well airborne hyperspectral imagery can be used to distinguish vegetation land covers. Fort A. P. Hill is located in east-central Virginia and is heavily forested with a mix of deciduous and coniferous species native to the mid-Atlantic region. The location and extent of the forest species is documented in a land cover database compiled by the Fort for planning and resource protection purposes. The AVIRIS data set consists of several low-altitude (3.7-m GSD) flight lines on two dates: November 1999 and September 2001. Our goal is to characterize the both the natural variability of vegetation land covers using mathematical and biophysical metrics and to assess differences between land covers for classification purposes.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"81 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Distinguishing vegetation land covers using hyperspectral imagery\",\"authors\":\"J. Cipar, T. Cooley, R. Lockwood\",\"doi\":\"10.1109/WARSD.2003.1295181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use AVIRIS data collected at Fort A. P. Hill, Virginia, to evaluate how well airborne hyperspectral imagery can be used to distinguish vegetation land covers. Fort A. P. Hill is located in east-central Virginia and is heavily forested with a mix of deciduous and coniferous species native to the mid-Atlantic region. The location and extent of the forest species is documented in a land cover database compiled by the Fort for planning and resource protection purposes. The AVIRIS data set consists of several low-altitude (3.7-m GSD) flight lines on two dates: November 1999 and September 2001. Our goal is to characterize the both the natural variability of vegetation land covers using mathematical and biophysical metrics and to assess differences between land covers for classification purposes.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"81 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们使用在弗吉尼亚州A. P. Hill堡收集的AVIRIS数据来评估航空高光谱图像用于区分植被土地覆盖的效果。a . P. Hill堡位于弗吉尼亚州中东部,森林茂密,既有大西洋中部地区的落叶物种,也有针叶物种。森林物种的位置和范围记录在由堡垒为规划和资源保护目的编制的土地覆盖数据库中。AVIRIS数据集包括1999年11月和2001年9月两个日期的几条低空(3.7米GSD)航线。我们的目标是利用数学和生物物理指标来描述植被土地覆盖的自然变异性,并评估土地覆盖之间的差异以进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinguishing vegetation land covers using hyperspectral imagery
We use AVIRIS data collected at Fort A. P. Hill, Virginia, to evaluate how well airborne hyperspectral imagery can be used to distinguish vegetation land covers. Fort A. P. Hill is located in east-central Virginia and is heavily forested with a mix of deciduous and coniferous species native to the mid-Atlantic region. The location and extent of the forest species is documented in a land cover database compiled by the Fort for planning and resource protection purposes. The AVIRIS data set consists of several low-altitude (3.7-m GSD) flight lines on two dates: November 1999 and September 2001. Our goal is to characterize the both the natural variability of vegetation land covers using mathematical and biophysical metrics and to assess differences between land covers for classification purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A residual-based approach to classification of remote sensing images Operational segmentation and classification of SAR sea ice imagery The spectral similarity scale and its application to the classification of hyperspectral remote sensing data Further results on AMM for endmember induction Spatial/Spectral analysis of hyperspectral image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1