热电系统的最优耦合:一种随机分层方法

Lesia Mitridati, P. Pinson
{"title":"热电系统的最优耦合:一种随机分层方法","authors":"Lesia Mitridati, P. Pinson","doi":"10.1109/PMAPS.2016.7764188","DOIUrl":null,"url":null,"abstract":"The large penetration of renewables in the power system increases the need for flexibility. Flexibility gains and wind curtailment reduction can be achieved through a better coordination with other energy systems, in particular with district heating. Loose interactions between these two systems already exist due to the participation of CHPs in both markets. New market structures must be developed in order to exploit these synergies. Recognizing the above-mentioned challenges this paper proposes a stochastic hierarchical formulation of the heat economic dispatch problem in a system with high penetration of CHPs and wind. The objective of this optimization problem is to minimize the heat production cost, subject to constraints describing day-ahead electricity market clearing scenarios. Uncertainties concerning wind power production, electricity demand and rival participants offers are efficiently modelled using a finite set of scenarios. This model takes advantage of existing market structures and provides a decision-making tool for heat system operators. The proposed model is implemented in a case study and results are discussed to show the benefits and applicability of this approach.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Optimal coupling of heat and electricity systems: A stochastic hierarchical approach\",\"authors\":\"Lesia Mitridati, P. Pinson\",\"doi\":\"10.1109/PMAPS.2016.7764188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large penetration of renewables in the power system increases the need for flexibility. Flexibility gains and wind curtailment reduction can be achieved through a better coordination with other energy systems, in particular with district heating. Loose interactions between these two systems already exist due to the participation of CHPs in both markets. New market structures must be developed in order to exploit these synergies. Recognizing the above-mentioned challenges this paper proposes a stochastic hierarchical formulation of the heat economic dispatch problem in a system with high penetration of CHPs and wind. The objective of this optimization problem is to minimize the heat production cost, subject to constraints describing day-ahead electricity market clearing scenarios. Uncertainties concerning wind power production, electricity demand and rival participants offers are efficiently modelled using a finite set of scenarios. This model takes advantage of existing market structures and provides a decision-making tool for heat system operators. The proposed model is implemented in a case study and results are discussed to show the benefits and applicability of this approach.\",\"PeriodicalId\":265474,\"journal\":{\"name\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS.2016.7764188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

可再生能源在电力系统中的大量渗透增加了对灵活性的需求。通过与其他能源系统,特别是区域供热系统更好地协调,可以提高灵活性和减少弃风。这两个系统之间已经存在松散的相互作用,因为这两个市场都有热电联产企业的参与。必须发展新的市场结构,以便利用这些协同作用。认识到上述挑战,本文提出了高热电联产和风渗透系统的热经济调度问题的随机分层公式。该优化问题的目标是使产热成本最小化,同时受限于描述前一天电力市场出清情景的约束。风能生产、电力需求和竞争对手报价的不确定性可以使用有限的场景集有效地建模。该模型利用了现有的市场结构,为供热系统运营商提供了决策工具。该模型在一个案例研究中得到了实现,并对结果进行了讨论,以显示该方法的优点和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal coupling of heat and electricity systems: A stochastic hierarchical approach
The large penetration of renewables in the power system increases the need for flexibility. Flexibility gains and wind curtailment reduction can be achieved through a better coordination with other energy systems, in particular with district heating. Loose interactions between these two systems already exist due to the participation of CHPs in both markets. New market structures must be developed in order to exploit these synergies. Recognizing the above-mentioned challenges this paper proposes a stochastic hierarchical formulation of the heat economic dispatch problem in a system with high penetration of CHPs and wind. The objective of this optimization problem is to minimize the heat production cost, subject to constraints describing day-ahead electricity market clearing scenarios. Uncertainties concerning wind power production, electricity demand and rival participants offers are efficiently modelled using a finite set of scenarios. This model takes advantage of existing market structures and provides a decision-making tool for heat system operators. The proposed model is implemented in a case study and results are discussed to show the benefits and applicability of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1