基于干扰子空间的盲多用户检测

Junlin Zhang, Ling Nie
{"title":"基于干扰子空间的盲多用户检测","authors":"Junlin Zhang, Ling Nie","doi":"10.1109/ICCI-CC.2013.6622289","DOIUrl":null,"url":null,"abstract":"A new blind adaptive MMSE multi-user detection(MUD) based on subspace tracking is presented. The new detector doesn't employ interference eigenvalue estimation but the interference subspace estimation, and it avoids performance deterioration induced by eigenvalue estimation error. The proposed MUD exploits the normalized orthogonal Oja (NOOja) subspace tracking algorithm for subspace estimation, since it guarantees the orthogonality of the weight matrix spanned by the interference subspace in every iteration, which must be meet in the new detector. The numerical simulation results the proposed MMSE detector has faster convergence rate, better output SIR and BER and lower the computational complexity.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind multi-user detection based on inerference subspace\",\"authors\":\"Junlin Zhang, Ling Nie\",\"doi\":\"10.1109/ICCI-CC.2013.6622289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new blind adaptive MMSE multi-user detection(MUD) based on subspace tracking is presented. The new detector doesn't employ interference eigenvalue estimation but the interference subspace estimation, and it avoids performance deterioration induced by eigenvalue estimation error. The proposed MUD exploits the normalized orthogonal Oja (NOOja) subspace tracking algorithm for subspace estimation, since it guarantees the orthogonality of the weight matrix spanned by the interference subspace in every iteration, which must be meet in the new detector. The numerical simulation results the proposed MMSE detector has faster convergence rate, better output SIR and BER and lower the computational complexity.\",\"PeriodicalId\":130244,\"journal\":{\"name\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2013.6622289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的基于子空间跟踪的盲自适应MMSE多用户检测方法。该检测器不采用干扰特征值估计,而是采用干扰子空间估计,避免了特征值估计误差导致的性能下降。该方法利用归一化正交Oja (noja)子空间跟踪算法进行子空间估计,保证了干涉子空间每次迭代所张成的权矩阵的正交性,这是新检测器必须满足的。数值仿真结果表明,所提出的MMSE检测器具有更快的收敛速度、更好的输出SIR和BER以及更低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind multi-user detection based on inerference subspace
A new blind adaptive MMSE multi-user detection(MUD) based on subspace tracking is presented. The new detector doesn't employ interference eigenvalue estimation but the interference subspace estimation, and it avoids performance deterioration induced by eigenvalue estimation error. The proposed MUD exploits the normalized orthogonal Oja (NOOja) subspace tracking algorithm for subspace estimation, since it guarantees the orthogonality of the weight matrix spanned by the interference subspace in every iteration, which must be meet in the new detector. The numerical simulation results the proposed MMSE detector has faster convergence rate, better output SIR and BER and lower the computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordering: A reliable qualitative information for the alignment of sketch and metric maps Visual words sequence alignment for image classification Survey of measures for the structural dimension of ontologies An emotional regulation model with memories for virtual agents Visual words selection based on class separation measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1