{"title":"热带盐湖中的塞斯顿通量","authors":"L. Oseguera, J. Alcocer, E. Escobar","doi":"10.1080/03680770.2009.11902359","DOIUrl":null,"url":null,"abstract":"The dynamies of seston fluxes has been assoeiated with phytoplankton blooms in marine and freshwater systems (VINERMozziNI et al. 2003). The fate of these blooms is erucial to the understanding of earbon flow, nutrient eycling and eeosystem funetions. As a eonsequenee, it is important to unravel the meehanisms of particle sedimentation as well as the quantity and quality of settling particles. Eeosystem proeesses are important determinants o f the biogeoehemistry o f the oeean that ean be profoundly affeeted by ehanges in elimate (LE QuÉRÉ et al. 2005). The different routes that the particles take in the aquatie eeosystem (transfer in food-web, respiration, sedimentation, and burial) will define the availability of earbon to organisms and the time of return of earbon moleeules in the earbon eycle. The transfer in the food web and its proeesses are important eontrols of aquatie biogenie earbon flux and water-atmosphere earbon dioxide exehange (LEGENDRE 1999). Rapid inereases in phytoplankton biomass have a high potential for exporting partieulate organie matter from the euphotie layer, providing important information for the study of global fluxes of earbon in the inland water systems; however, if a larger fraetion of assimilated earbon is respired at low than at high latitudes, a smaller proportion o f produetion ean be exported in tropieal regions. The explieit inelusion of eeosystem proeesses in models will permit eeologieal ehanges to be taken into aeeount, allow us to understand how the uptake o f C02 in inland water systems is likely to ehange in the future, and improve our understanding o f the loeal and regional climate systems. The main losses forbloom biomasses are grazing, deeomposition in the mixing layer, and sedimentation to the bottom of lakes (ZoHARY et al. 1998). The dominant size fraetion o f phytoplankton defines the principal transfer path ofbiogenie earbon in the eeosystem. When the small fraetion (<2 f..Lm) dominates, the main route will be nutrient reeycling through the mierobialloop in the euphotie zone. In eontrast, when the large fraetion (>2 f..Lm) dominates, new produetion will either be exported to the bottom o f the lake or eonsumed by herbivores and eventually exported as feeal pellets (LEGENDRE 1999). The aim ofthis study was to evaluate the vertieal and temporai variation ofseston fluxes inLake Alchiehiea to betterunderstand the earbon dynamies of a tropieal, oligotrophie lake where the large size fraetion ofphytoplankton dominates.","PeriodicalId":404196,"journal":{"name":"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Seston flux in a tropical saline lake\",\"authors\":\"L. Oseguera, J. Alcocer, E. Escobar\",\"doi\":\"10.1080/03680770.2009.11902359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamies of seston fluxes has been assoeiated with phytoplankton blooms in marine and freshwater systems (VINERMozziNI et al. 2003). The fate of these blooms is erucial to the understanding of earbon flow, nutrient eycling and eeosystem funetions. As a eonsequenee, it is important to unravel the meehanisms of particle sedimentation as well as the quantity and quality of settling particles. Eeosystem proeesses are important determinants o f the biogeoehemistry o f the oeean that ean be profoundly affeeted by ehanges in elimate (LE QuÉRÉ et al. 2005). The different routes that the particles take in the aquatie eeosystem (transfer in food-web, respiration, sedimentation, and burial) will define the availability of earbon to organisms and the time of return of earbon moleeules in the earbon eycle. The transfer in the food web and its proeesses are important eontrols of aquatie biogenie earbon flux and water-atmosphere earbon dioxide exehange (LEGENDRE 1999). Rapid inereases in phytoplankton biomass have a high potential for exporting partieulate organie matter from the euphotie layer, providing important information for the study of global fluxes of earbon in the inland water systems; however, if a larger fraetion of assimilated earbon is respired at low than at high latitudes, a smaller proportion o f produetion ean be exported in tropieal regions. The explieit inelusion of eeosystem proeesses in models will permit eeologieal ehanges to be taken into aeeount, allow us to understand how the uptake o f C02 in inland water systems is likely to ehange in the future, and improve our understanding o f the loeal and regional climate systems. The main losses forbloom biomasses are grazing, deeomposition in the mixing layer, and sedimentation to the bottom of lakes (ZoHARY et al. 1998). The dominant size fraetion o f phytoplankton defines the principal transfer path ofbiogenie earbon in the eeosystem. When the small fraetion (<2 f..Lm) dominates, the main route will be nutrient reeycling through the mierobialloop in the euphotie zone. In eontrast, when the large fraetion (>2 f..Lm) dominates, new produetion will either be exported to the bottom o f the lake or eonsumed by herbivores and eventually exported as feeal pellets (LEGENDRE 1999). The aim ofthis study was to evaluate the vertieal and temporai variation ofseston fluxes inLake Alchiehiea to betterunderstand the earbon dynamies of a tropieal, oligotrophie lake where the large size fraetion ofphytoplankton dominates.\",\"PeriodicalId\":404196,\"journal\":{\"name\":\"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03680770.2009.11902359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03680770.2009.11902359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
林分通量的动态与海洋和淡水系统中的浮游植物大量繁殖有关(VINERMozziNI等,2003年)。这些水华的命运对于理解碳流、养分循环和生态系统功能至关重要。因此,阐明颗粒沉降的机理以及沉降颗粒的数量和质量是非常重要的。生态系统过程是海洋生物地球化学的重要决定因素,海洋的生物地球化学会受到气候变化的深刻影响(LE QuÉRÉ et al. 2005)。颗粒在水生生态系统中的不同途径(在食物网中的转移、呼吸作用、沉积作用和埋藏作用)将决定有机物对碳的可利用性以及碳分子在碳循环中返回的时间。食物网中的转移及其过程是水生生物碳通量和水-大气二氧化碳交换的重要控制因素(LEGENDRE 1999)。浮游植物生物量的快速增加具有从正能量层输出颗粒有机质的巨大潜力,为研究内陆水系的全球碳通量提供了重要信息;但是,如果在低纬度地区比在高纬度地区呼吸更大比例的同化碳,则在热带地区输出的产量比例较小。模式中生态系统过程的明确包含将允许考虑生态变化,使我们能够了解内陆水系统对二氧化碳的吸收如何在未来可能发生变化,并提高我们对局部和区域气候系统的理解。开花生物量的主要损失是放牧、混合层的分解和沉积到湖底(ZoHARY et al. 1998)。浮游植物的优势大小比例决定了生态系统中生物碳的主要转移途径。当一小部分(2f .. m)占主导地位时,新的产品要么出口到湖底,要么被食草动物消耗,最终作为颗粒状颗粒出口(LEGENDRE 1999)。本研究的目的是评估阿尔奇希亚湖的垂直和时间变化,以更好地了解大尺度浮游植物占主导地位的热带、少营养湖泊的碳动态。
The dynamies of seston fluxes has been assoeiated with phytoplankton blooms in marine and freshwater systems (VINERMozziNI et al. 2003). The fate of these blooms is erucial to the understanding of earbon flow, nutrient eycling and eeosystem funetions. As a eonsequenee, it is important to unravel the meehanisms of particle sedimentation as well as the quantity and quality of settling particles. Eeosystem proeesses are important determinants o f the biogeoehemistry o f the oeean that ean be profoundly affeeted by ehanges in elimate (LE QuÉRÉ et al. 2005). The different routes that the particles take in the aquatie eeosystem (transfer in food-web, respiration, sedimentation, and burial) will define the availability of earbon to organisms and the time of return of earbon moleeules in the earbon eycle. The transfer in the food web and its proeesses are important eontrols of aquatie biogenie earbon flux and water-atmosphere earbon dioxide exehange (LEGENDRE 1999). Rapid inereases in phytoplankton biomass have a high potential for exporting partieulate organie matter from the euphotie layer, providing important information for the study of global fluxes of earbon in the inland water systems; however, if a larger fraetion of assimilated earbon is respired at low than at high latitudes, a smaller proportion o f produetion ean be exported in tropieal regions. The explieit inelusion of eeosystem proeesses in models will permit eeologieal ehanges to be taken into aeeount, allow us to understand how the uptake o f C02 in inland water systems is likely to ehange in the future, and improve our understanding o f the loeal and regional climate systems. The main losses forbloom biomasses are grazing, deeomposition in the mixing layer, and sedimentation to the bottom of lakes (ZoHARY et al. 1998). The dominant size fraetion o f phytoplankton defines the principal transfer path ofbiogenie earbon in the eeosystem. When the small fraetion (<2 f..Lm) dominates, the main route will be nutrient reeycling through the mierobialloop in the euphotie zone. In eontrast, when the large fraetion (>2 f..Lm) dominates, new produetion will either be exported to the bottom o f the lake or eonsumed by herbivores and eventually exported as feeal pellets (LEGENDRE 1999). The aim ofthis study was to evaluate the vertieal and temporai variation ofseston fluxes inLake Alchiehiea to betterunderstand the earbon dynamies of a tropieal, oligotrophie lake where the large size fraetion ofphytoplankton dominates.