{"title":"辐照张量在非朗伯现象模拟中的应用","authors":"J. Arvo","doi":"10.1145/218380.218467","DOIUrl":null,"url":null,"abstract":"We present new techniques for computing illumination from non-diffuse luminaires and scattering from non-diffuse surfaces. The methods are based on new closed-form expressions derived using a generalization of irradiance known as irradiance tensors. The elements of these tensors are angular moments, weighted integrals of the radiation field that are useful in simulating a variety of non-diffuse phenomena. Applications include the computation of irradiance due to directionally-varying area light sources, reflections from glossy surfaces, and transmission through glossy surfaces. The principles apply to any emission, reflection, or transmission distribution expressed as a polynomial over the unit sphere. We derive expressions for a simple but versatile subclass of these functions, called axial moments, and present complete algorithms their exact evaluation in polyhedral environments. The algorithms are demonstrated by simulating Phong-like emission and scattering effects. CR","PeriodicalId":447770,"journal":{"name":"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Applications of irradiance tensors to the simulation of non-Lambertian phenomena\",\"authors\":\"J. Arvo\",\"doi\":\"10.1145/218380.218467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new techniques for computing illumination from non-diffuse luminaires and scattering from non-diffuse surfaces. The methods are based on new closed-form expressions derived using a generalization of irradiance known as irradiance tensors. The elements of these tensors are angular moments, weighted integrals of the radiation field that are useful in simulating a variety of non-diffuse phenomena. Applications include the computation of irradiance due to directionally-varying area light sources, reflections from glossy surfaces, and transmission through glossy surfaces. The principles apply to any emission, reflection, or transmission distribution expressed as a polynomial over the unit sphere. We derive expressions for a simple but versatile subclass of these functions, called axial moments, and present complete algorithms their exact evaluation in polyhedral environments. The algorithms are demonstrated by simulating Phong-like emission and scattering effects. CR\",\"PeriodicalId\":447770,\"journal\":{\"name\":\"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/218380.218467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/218380.218467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applications of irradiance tensors to the simulation of non-Lambertian phenomena
We present new techniques for computing illumination from non-diffuse luminaires and scattering from non-diffuse surfaces. The methods are based on new closed-form expressions derived using a generalization of irradiance known as irradiance tensors. The elements of these tensors are angular moments, weighted integrals of the radiation field that are useful in simulating a variety of non-diffuse phenomena. Applications include the computation of irradiance due to directionally-varying area light sources, reflections from glossy surfaces, and transmission through glossy surfaces. The principles apply to any emission, reflection, or transmission distribution expressed as a polynomial over the unit sphere. We derive expressions for a simple but versatile subclass of these functions, called axial moments, and present complete algorithms their exact evaluation in polyhedral environments. The algorithms are demonstrated by simulating Phong-like emission and scattering effects. CR