基于灰色预测模型的交通指标预测

P. Hui, Wenqi Qu, Junjian Tang, J. Chen
{"title":"基于灰色预测模型的交通指标预测","authors":"P. Hui, Wenqi Qu, Junjian Tang, J. Chen","doi":"10.1109/ISCID.2013.68","DOIUrl":null,"url":null,"abstract":"The grey prediction model is a kind of data prediction method in data mining area. The construction of the grey prediction model is introduced in the paper first. Then in order to obtain higher precision of the prediction model, the way on how to select adjust parameters to adjust the original model is introduced. Finally the prediction procedure is described in a figure and it is explained in details. In case study, fifty traffic indexes come from transport bureau of Hunan province are predicted. It shows the effect and efficiency of the grey prediction model and its adjust parameters.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Traffic Indexes Prediction Based on Grey Prediction Model\",\"authors\":\"P. Hui, Wenqi Qu, Junjian Tang, J. Chen\",\"doi\":\"10.1109/ISCID.2013.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grey prediction model is a kind of data prediction method in data mining area. The construction of the grey prediction model is introduced in the paper first. Then in order to obtain higher precision of the prediction model, the way on how to select adjust parameters to adjust the original model is introduced. Finally the prediction procedure is described in a figure and it is explained in details. In case study, fifty traffic indexes come from transport bureau of Hunan province are predicted. It shows the effect and efficiency of the grey prediction model and its adjust parameters.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

灰色预测模型是数据挖掘领域的一种数据预测方法。本文首先介绍了灰色预测模型的构建。然后,为了获得更高的预测模型精度,介绍了如何选择调整参数对原模型进行调整的方法。最后以图的形式描述了预测过程,并对其进行了详细的说明。通过实例分析,对湖南省交通局的50项交通指标进行了预测。验证了灰色预测模型及其调整参数的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic Indexes Prediction Based on Grey Prediction Model
The grey prediction model is a kind of data prediction method in data mining area. The construction of the grey prediction model is introduced in the paper first. Then in order to obtain higher precision of the prediction model, the way on how to select adjust parameters to adjust the original model is introduced. Finally the prediction procedure is described in a figure and it is explained in details. In case study, fifty traffic indexes come from transport bureau of Hunan province are predicted. It shows the effect and efficiency of the grey prediction model and its adjust parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1