CPS仿真框架CARES:在自主水下航行器导航功能中的应用

Loïc Salmon, P. Pillain, Goulven Guillou, Jean-Philippe Babau
{"title":"CPS仿真框架CARES:在自主水下航行器导航功能中的应用","authors":"Loïc Salmon, P. Pillain, Goulven Guillou, Jean-Philippe Babau","doi":"10.1109/FDL53530.2021.9568380","DOIUrl":null,"url":null,"abstract":"One key objective of Cyber-Physical System (CPS) simulation is to evaluate different CPS configurations regarding a certain user objective. First, simulation of CPS necessitates frameworks to handle heterogeneity of CPS components (the software and hardware system control, the behavior of the CPS itself and its physical environment). Then, to build simulators, designers use paradigms like FMI (Functional Mock-Up Interface) that proposes a data-driven generic interface facilitating the integration of heterogeneous models. However, in order to facilitate simulation configuration, an approach is required to drive modeling of parametric features and operational conditions. In this paper, we present CARES, a component-based and model-driven approach to facilitate CPS simulation. CARES is applied to evaluate an Autonomous Underwater Vehicle (AUV) navigation function by simulation. The proposed models integrate both the principles of a generic simulation (integration of Component Based Software Engineering CBSE concepts and FMI paradigm) and domain specific aspects through a component-based architecture style. From a design model, a code generator builds the structural (Java or C++) code of the simulator. The generated code relies on a given run-time library for its execution and its structure facilitates integration of domain-specific code. The experiments show the effectiveness of the approach to build simulators for evaluation of different AUV configurations.","PeriodicalId":114039,"journal":{"name":"2021 Forum on specification & Design Languages (FDL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CARES, a framework for CPS simulation : application to autonomous underwater vehicle navigation function\",\"authors\":\"Loïc Salmon, P. Pillain, Goulven Guillou, Jean-Philippe Babau\",\"doi\":\"10.1109/FDL53530.2021.9568380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One key objective of Cyber-Physical System (CPS) simulation is to evaluate different CPS configurations regarding a certain user objective. First, simulation of CPS necessitates frameworks to handle heterogeneity of CPS components (the software and hardware system control, the behavior of the CPS itself and its physical environment). Then, to build simulators, designers use paradigms like FMI (Functional Mock-Up Interface) that proposes a data-driven generic interface facilitating the integration of heterogeneous models. However, in order to facilitate simulation configuration, an approach is required to drive modeling of parametric features and operational conditions. In this paper, we present CARES, a component-based and model-driven approach to facilitate CPS simulation. CARES is applied to evaluate an Autonomous Underwater Vehicle (AUV) navigation function by simulation. The proposed models integrate both the principles of a generic simulation (integration of Component Based Software Engineering CBSE concepts and FMI paradigm) and domain specific aspects through a component-based architecture style. From a design model, a code generator builds the structural (Java or C++) code of the simulator. The generated code relies on a given run-time library for its execution and its structure facilitates integration of domain-specific code. The experiments show the effectiveness of the approach to build simulators for evaluation of different AUV configurations.\",\"PeriodicalId\":114039,\"journal\":{\"name\":\"2021 Forum on specification & Design Languages (FDL)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Forum on specification & Design Languages (FDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FDL53530.2021.9568380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Forum on specification & Design Languages (FDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDL53530.2021.9568380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络物理系统(CPS)仿真的一个关键目标是评估针对特定用户目标的不同CPS配置。首先,CPS的仿真需要框架来处理CPS组件的异构性(软件和硬件系统控制,CPS本身的行为及其物理环境)。然后,为了构建模拟器,设计人员使用像FMI(功能模型接口)这样的范例,它提出了一个数据驱动的通用接口,以促进异构模型的集成。然而,为了便于仿真配置,需要一种方法来驱动参数特征和操作条件的建模。在本文中,我们提出了CARES,一种基于组件和模型驱动的方法来促进CPS仿真。通过仿真,将CARES应用于自主水下航行器(AUV)的导航功能评估。提出的模型通过基于组件的体系结构风格集成了通用仿真原理(基于组件的软件工程CBSE概念和FMI范例的集成)和领域特定方面。从设计模型中,代码生成器构建模拟器的结构(Java或c++)代码。生成的代码依赖于给定的运行时库来执行,其结构促进了特定领域代码的集成。实验结果表明,该方法可以有效地建立不同水下航行器构型的仿真器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CARES, a framework for CPS simulation : application to autonomous underwater vehicle navigation function
One key objective of Cyber-Physical System (CPS) simulation is to evaluate different CPS configurations regarding a certain user objective. First, simulation of CPS necessitates frameworks to handle heterogeneity of CPS components (the software and hardware system control, the behavior of the CPS itself and its physical environment). Then, to build simulators, designers use paradigms like FMI (Functional Mock-Up Interface) that proposes a data-driven generic interface facilitating the integration of heterogeneous models. However, in order to facilitate simulation configuration, an approach is required to drive modeling of parametric features and operational conditions. In this paper, we present CARES, a component-based and model-driven approach to facilitate CPS simulation. CARES is applied to evaluate an Autonomous Underwater Vehicle (AUV) navigation function by simulation. The proposed models integrate both the principles of a generic simulation (integration of Component Based Software Engineering CBSE concepts and FMI paradigm) and domain specific aspects through a component-based architecture style. From a design model, a code generator builds the structural (Java or C++) code of the simulator. The generated code relies on a given run-time library for its execution and its structure facilitates integration of domain-specific code. The experiments show the effectiveness of the approach to build simulators for evaluation of different AUV configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Common Manipulation Framework for Transistor-Level Languages The Challenge of Agriculture: Increase the Productivity in a Sustainable Way Modeling and Performance Estimation of Robotic Systems using ROS: Application to drone-based Services Debugging and Verification Tools for Lingua Franca in Gemoc Studio In-Vivo Stack Overflow Detection and Stack Size Estimation for Low-End Multithreaded Operating Systems using Virtual Prototypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1