{"title":"基于代数决策图(ADD)的组合设计泄漏直方图查找技术","authors":"Kanupriya Gulati, N. Jayakumar, S. Khatri","doi":"10.1145/1077603.1077633","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algebraic decision diagram (ADD) based approach to determine and implicitly represent the leakage value for all input vectors of a combinational circuit. In its exact form, our technique can compute the leakage value of each input vector. To broaden the applicability of our technique, we present an approximate version of our algorithm as well. The approximation is done by limiting the total number of discriminant nodes in any ADD. Previous sleep vector computation techniques can find either the maximum or minimum sleep vector. Our technique computes the leakages for all vectors, storing them implicitly in an ADD structure. We experimentally demonstrate that these approximate techniques produce results which have reasonable errors. We also show that limiting the number of discriminants to a value between 12 and 16 is practical, allowing for good accuracy and lowered memory utilization.","PeriodicalId":256018,"journal":{"name":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An algebraic decision diagram (ADD) based technique to find leakage histograms of combinational designs\",\"authors\":\"Kanupriya Gulati, N. Jayakumar, S. Khatri\",\"doi\":\"10.1145/1077603.1077633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an algebraic decision diagram (ADD) based approach to determine and implicitly represent the leakage value for all input vectors of a combinational circuit. In its exact form, our technique can compute the leakage value of each input vector. To broaden the applicability of our technique, we present an approximate version of our algorithm as well. The approximation is done by limiting the total number of discriminant nodes in any ADD. Previous sleep vector computation techniques can find either the maximum or minimum sleep vector. Our technique computes the leakages for all vectors, storing them implicitly in an ADD structure. We experimentally demonstrate that these approximate techniques produce results which have reasonable errors. We also show that limiting the number of discriminants to a value between 12 and 16 is practical, allowing for good accuracy and lowered memory utilization.\",\"PeriodicalId\":256018,\"journal\":{\"name\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1077603.1077633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077603.1077633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An algebraic decision diagram (ADD) based technique to find leakage histograms of combinational designs
In this paper, we present an algebraic decision diagram (ADD) based approach to determine and implicitly represent the leakage value for all input vectors of a combinational circuit. In its exact form, our technique can compute the leakage value of each input vector. To broaden the applicability of our technique, we present an approximate version of our algorithm as well. The approximation is done by limiting the total number of discriminant nodes in any ADD. Previous sleep vector computation techniques can find either the maximum or minimum sleep vector. Our technique computes the leakages for all vectors, storing them implicitly in an ADD structure. We experimentally demonstrate that these approximate techniques produce results which have reasonable errors. We also show that limiting the number of discriminants to a value between 12 and 16 is practical, allowing for good accuracy and lowered memory utilization.