基于强化学习的多迷宫环境下多机器人系统动态领导者选择

S. Manoharan, Wei-Yu Chiu, Chih-Yuan Yu
{"title":"基于强化学习的多迷宫环境下多机器人系统动态领导者选择","authors":"S. Manoharan, Wei-Yu Chiu, Chih-Yuan Yu","doi":"10.1109/ICASI57738.2023.10179514","DOIUrl":null,"url":null,"abstract":"This paper examines a leader selection problem of a multirobot leader-follower system in maze-like environments. Behavior-based control and a repulsive force method are applied to the leader and follower robots navigating the environments; a Q-learning algorithm combined with a fuzzy-based state approximation is developed to automatically assign a leader when robots are stranded; a cross-entropy exploration storing algorithm is proposed to exploit the information learned. Numerical analyses illustrate the effectiveness of the proposed leader selection approach based on reinforcement learning: the multirobot system can dynamically select a leader and navigate maze-like environments of interest to reach the destination. Index Terms—Reinforcement learning, Q-learning, mobile robot, multirobot system, maze, behavior based model, repulsive force method, fuzzy inference system.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Leader Selection of a Multirobot System in Multiple Maze-like Environments Using Reinforcement Learning\",\"authors\":\"S. Manoharan, Wei-Yu Chiu, Chih-Yuan Yu\",\"doi\":\"10.1109/ICASI57738.2023.10179514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines a leader selection problem of a multirobot leader-follower system in maze-like environments. Behavior-based control and a repulsive force method are applied to the leader and follower robots navigating the environments; a Q-learning algorithm combined with a fuzzy-based state approximation is developed to automatically assign a leader when robots are stranded; a cross-entropy exploration storing algorithm is proposed to exploit the information learned. Numerical analyses illustrate the effectiveness of the proposed leader selection approach based on reinforcement learning: the multirobot system can dynamically select a leader and navigate maze-like environments of interest to reach the destination. Index Terms—Reinforcement learning, Q-learning, mobile robot, multirobot system, maze, behavior based model, repulsive force method, fuzzy inference system.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了迷宫环境下多机器人领导-随从系统的领导者选择问题。将基于行为的控制和斥力方法应用于领导机器人和跟随机器人在环境中导航;提出了一种结合模糊状态逼近的q学习算法,在机器人陷入困境时自动分配领导者;为了利用学习到的信息,提出了一种交叉熵探索存储算法。数值分析表明了基于强化学习的领队选择方法的有效性:多机器人系统可以动态地选择领队,并通过感兴趣的迷宫式环境到达目的地。关键词:强化学习,q -学习,移动机器人,多机器人系统,迷宫,基于行为的模型,排斥力法,模糊推理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Leader Selection of a Multirobot System in Multiple Maze-like Environments Using Reinforcement Learning
This paper examines a leader selection problem of a multirobot leader-follower system in maze-like environments. Behavior-based control and a repulsive force method are applied to the leader and follower robots navigating the environments; a Q-learning algorithm combined with a fuzzy-based state approximation is developed to automatically assign a leader when robots are stranded; a cross-entropy exploration storing algorithm is proposed to exploit the information learned. Numerical analyses illustrate the effectiveness of the proposed leader selection approach based on reinforcement learning: the multirobot system can dynamically select a leader and navigate maze-like environments of interest to reach the destination. Index Terms—Reinforcement learning, Q-learning, mobile robot, multirobot system, maze, behavior based model, repulsive force method, fuzzy inference system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1