利用激光雷达和相机特征从GIS数据中提取上下文

Juan D. González, Hans-Joachim Wünsche
{"title":"利用激光雷达和相机特征从GIS数据中提取上下文","authors":"Juan D. González, Hans-Joachim Wünsche","doi":"10.1109/MFI55806.2022.9913849","DOIUrl":null,"url":null,"abstract":"We propose a method to extract spatial context of unknown objects in a driving scenario by classifying the surfaces in which the traffic participants transit. In order to classify these surfaces without the need for a big amount of labeled data, we resort to an unsupervised learning method that clusters patches of terrain using features extracted from LiDAR and image data. Using an iterative method, we are able to model the characteristics of map features from a geographical information system (GIS), such as streets and sidewalks, and extend their contextual meaning to the area around our test vehicle. We evaluate our results using a partially labeled 3D scan of our campus and find that our method is able to correctly extract and extend the spatial context of the map features from the GIS to the labeled surfaces on the campus.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Context Extraction from GIS Data Using LiDAR and Camera Features\",\"authors\":\"Juan D. González, Hans-Joachim Wünsche\",\"doi\":\"10.1109/MFI55806.2022.9913849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to extract spatial context of unknown objects in a driving scenario by classifying the surfaces in which the traffic participants transit. In order to classify these surfaces without the need for a big amount of labeled data, we resort to an unsupervised learning method that clusters patches of terrain using features extracted from LiDAR and image data. Using an iterative method, we are able to model the characteristics of map features from a geographical information system (GIS), such as streets and sidewalks, and extend their contextual meaning to the area around our test vehicle. We evaluate our results using a partially labeled 3D scan of our campus and find that our method is able to correctly extract and extend the spatial context of the map features from the GIS to the labeled surfaces on the campus.\",\"PeriodicalId\":344737,\"journal\":{\"name\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI55806.2022.9913849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种通过对交通参与者经过的表面进行分类来提取驾驶场景中未知物体的空间上下文的方法。为了在不需要大量标记数据的情况下对这些表面进行分类,我们采用了一种无监督学习方法,该方法使用从激光雷达和图像数据中提取的特征对地形斑块进行聚类。使用迭代方法,我们能够从地理信息系统(GIS)中建模地图特征的特征,例如街道和人行道,并将其上下文含义扩展到我们测试车辆周围的区域。我们使用校园的部分标记3D扫描来评估我们的结果,发现我们的方法能够正确地提取和扩展地图特征的空间背景,从GIS到校园的标记表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context Extraction from GIS Data Using LiDAR and Camera Features
We propose a method to extract spatial context of unknown objects in a driving scenario by classifying the surfaces in which the traffic participants transit. In order to classify these surfaces without the need for a big amount of labeled data, we resort to an unsupervised learning method that clusters patches of terrain using features extracted from LiDAR and image data. Using an iterative method, we are able to model the characteristics of map features from a geographical information system (GIS), such as streets and sidewalks, and extend their contextual meaning to the area around our test vehicle. We evaluate our results using a partially labeled 3D scan of our campus and find that our method is able to correctly extract and extend the spatial context of the map features from the GIS to the labeled surfaces on the campus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1