基于聚类的仓储物料周转时间优化

Yong Li, Xiaoyun Tian, Jiangkai Jia, Bin Zheng, Hairu Li, Mingda Wang, Ximin Sun
{"title":"基于聚类的仓储物料周转时间优化","authors":"Yong Li, Xiaoyun Tian, Jiangkai Jia, Bin Zheng, Hairu Li, Mingda Wang, Ximin Sun","doi":"10.1109/SmartIoT55134.2022.00047","DOIUrl":null,"url":null,"abstract":"The warehousing and logistics industry is a basic, strategic and leading industry that supports the development of the national economy. Efforts must be made to improve the intelligent level of warehousing and logistics in the Turnover Time. Warehousing and logistics in the power field are large in scale and wide in scope. In this paper, we use exponential smoothing algorithm to compress large amounts of data while eliminating extreme data. K-means and DBSCAN algorithms are used to deal with data factors related to the turnover time of warehousing materials.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Warehousing Material Turnover Time Based on Clustering\",\"authors\":\"Yong Li, Xiaoyun Tian, Jiangkai Jia, Bin Zheng, Hairu Li, Mingda Wang, Ximin Sun\",\"doi\":\"10.1109/SmartIoT55134.2022.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The warehousing and logistics industry is a basic, strategic and leading industry that supports the development of the national economy. Efforts must be made to improve the intelligent level of warehousing and logistics in the Turnover Time. Warehousing and logistics in the power field are large in scale and wide in scope. In this paper, we use exponential smoothing algorithm to compress large amounts of data while eliminating extreme data. K-means and DBSCAN algorithms are used to deal with data factors related to the turnover time of warehousing materials.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仓储物流业是支撑国民经济发展的基础性、战略性、主导性产业。必须努力提高周转时间内仓储物流的智能化水平。电力领域的仓储物流规模大、范围广。在本文中,我们使用指数平滑算法来压缩大量数据,同时消除极端数据。采用K-means和DBSCAN算法处理与仓储物料周转时间相关的数据因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Warehousing Material Turnover Time Based on Clustering
The warehousing and logistics industry is a basic, strategic and leading industry that supports the development of the national economy. Efforts must be made to improve the intelligent level of warehousing and logistics in the Turnover Time. Warehousing and logistics in the power field are large in scale and wide in scope. In this paper, we use exponential smoothing algorithm to compress large amounts of data while eliminating extreme data. K-means and DBSCAN algorithms are used to deal with data factors related to the turnover time of warehousing materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SmartCare: Detecting Heart Failure and Diabetes Using Smartwatch A Subspace Fusion of Hyper-parameter Optimization Method Based on Mean Regression A hybrid SOM and HMM classifier in a Fog Computing gateway for Ambient Assisted Living Environment The transitional phase of Boost.Asio and POCO C++ networking libraries towards IPv6 and IoT networking security Automotive Components Localization and De-globalization Purchasing Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1