L. Atallah, O. Aziz, Benny P. L. Lo, Guang-Zhong Yang
{"title":"用耳戴式传感器检测行走步态障碍","authors":"L. Atallah, O. Aziz, Benny P. L. Lo, Guang-Zhong Yang","doi":"10.1109/BSN.2009.41","DOIUrl":null,"url":null,"abstract":"This paper investigates an ear worn sensor for the development of a gait analysis framework. Instead of explicitly defining gait features that indicate injury or impairment, an automatic method of feature extraction and selection is proposed. The proposed framework uses multi-resolution wavelet analysis and margin based feature selection. It was validated on three datasets; the first simulating a leg injury, the second simulating abdominal impairment that could result from surgery or injury and the third is a dataset collected from a patient during recovery from leg injury. The method shows a clear distinction of gait between injured and normal walking. It also illustrates the fact that using source separation before pattern classification can significantly improve the proposed gait analysis framework.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Detecting Walking Gait Impairment with an Ear-worn Sensor\",\"authors\":\"L. Atallah, O. Aziz, Benny P. L. Lo, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2009.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates an ear worn sensor for the development of a gait analysis framework. Instead of explicitly defining gait features that indicate injury or impairment, an automatic method of feature extraction and selection is proposed. The proposed framework uses multi-resolution wavelet analysis and margin based feature selection. It was validated on three datasets; the first simulating a leg injury, the second simulating abdominal impairment that could result from surgery or injury and the third is a dataset collected from a patient during recovery from leg injury. The method shows a clear distinction of gait between injured and normal walking. It also illustrates the fact that using source separation before pattern classification can significantly improve the proposed gait analysis framework.\",\"PeriodicalId\":269861,\"journal\":{\"name\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2009.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting Walking Gait Impairment with an Ear-worn Sensor
This paper investigates an ear worn sensor for the development of a gait analysis framework. Instead of explicitly defining gait features that indicate injury or impairment, an automatic method of feature extraction and selection is proposed. The proposed framework uses multi-resolution wavelet analysis and margin based feature selection. It was validated on three datasets; the first simulating a leg injury, the second simulating abdominal impairment that could result from surgery or injury and the third is a dataset collected from a patient during recovery from leg injury. The method shows a clear distinction of gait between injured and normal walking. It also illustrates the fact that using source separation before pattern classification can significantly improve the proposed gait analysis framework.