使用低分辨率深度视频数据的真实家庭中的动作识别

F. D. Casagrande, O. O. Nedrejord, Wonho Lee, E. Zouganeli
{"title":"使用低分辨率深度视频数据的真实家庭中的动作识别","authors":"F. D. Casagrande, O. O. Nedrejord, Wonho Lee, E. Zouganeli","doi":"10.1109/CBMS.2019.00041","DOIUrl":null,"url":null,"abstract":"We report work in progress from interdisciplinary research on Assisted Living Technology in smart homes for older adults with mild cognitive impairments or dementia. We present our field trial, the set-up for collecting and storing data from real homes, and preliminary results on action recognition using low resolution depth video cameras. The data have been collected from seven apartments with one resident each over a period of two weeks. We propose a pre-processing of the depth videos by applying an Infinite Response Filter (IIR) for extracting the movements in the frames prior to classification. In this work we classify four actions: TV interaction (turn it on/ off and switch over), standing up, sitting down, and no movement. Our first results indicate that using the IIR filter for movement information extraction improves accuracy and can be an efficient method for recognizing actions. Our current implementation uses a convolutional long short-term memory (ConvLSTM) neural network, and achieved an average peak accuracy of 86%.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Action Recognition in Real Homes using Low Resolution Depth Video Data\",\"authors\":\"F. D. Casagrande, O. O. Nedrejord, Wonho Lee, E. Zouganeli\",\"doi\":\"10.1109/CBMS.2019.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report work in progress from interdisciplinary research on Assisted Living Technology in smart homes for older adults with mild cognitive impairments or dementia. We present our field trial, the set-up for collecting and storing data from real homes, and preliminary results on action recognition using low resolution depth video cameras. The data have been collected from seven apartments with one resident each over a period of two weeks. We propose a pre-processing of the depth videos by applying an Infinite Response Filter (IIR) for extracting the movements in the frames prior to classification. In this work we classify four actions: TV interaction (turn it on/ off and switch over), standing up, sitting down, and no movement. Our first results indicate that using the IIR filter for movement information extraction improves accuracy and can be an efficient method for recognizing actions. Our current implementation uses a convolutional long short-term memory (ConvLSTM) neural network, and achieved an average peak accuracy of 86%.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们报告了智能家居中辅助生活技术的跨学科研究进展,该技术适用于患有轻度认知障碍或痴呆症的老年人。我们展示了我们的现场试验,收集和存储真实家庭数据的设置,以及使用低分辨率深度摄像机进行动作识别的初步结果。这些数据是在七套公寓中收集的,每套公寓有一名居民,为期两周。我们提出了一种深度视频的预处理方法,通过应用无限响应滤波器(IIR)在分类之前提取帧中的运动。在这项工作中,我们将四种动作分类为:电视互动(打开/关闭和切换),站起来,坐下和不动。我们的第一个结果表明,使用IIR滤波器提取运动信息提高了准确性,可以成为一种有效的动作识别方法。我们目前的实现使用卷积长短期记忆(ConvLSTM)神经网络,并实现了86%的平均峰值准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Action Recognition in Real Homes using Low Resolution Depth Video Data
We report work in progress from interdisciplinary research on Assisted Living Technology in smart homes for older adults with mild cognitive impairments or dementia. We present our field trial, the set-up for collecting and storing data from real homes, and preliminary results on action recognition using low resolution depth video cameras. The data have been collected from seven apartments with one resident each over a period of two weeks. We propose a pre-processing of the depth videos by applying an Infinite Response Filter (IIR) for extracting the movements in the frames prior to classification. In this work we classify four actions: TV interaction (turn it on/ off and switch over), standing up, sitting down, and no movement. Our first results indicate that using the IIR filter for movement information extraction improves accuracy and can be an efficient method for recognizing actions. Our current implementation uses a convolutional long short-term memory (ConvLSTM) neural network, and achieved an average peak accuracy of 86%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1