模型测试的艺术:利用CFD使传统的油罐测试技术适应风力推进船舶的新时代

L. Marimon Giovannetti, F. Gerhardt, M. Kjellberg, M. Alexandersson, S. Werner
{"title":"模型测试的艺术:利用CFD使传统的油罐测试技术适应风力推进船舶的新时代","authors":"L. Marimon Giovannetti, F. Gerhardt, M. Kjellberg, M. Alexandersson, S. Werner","doi":"10.2218/marine2021.6815","DOIUrl":null,"url":null,"abstract":"Hybrid testing is an experimental technique that can be used to test ships and marine structures when both hydrodynamic and aerodynamic effects are important, for example for wind powered or wind assisted ships and sailing vessels. SSPA is currently developing an experimental method using hybrid testing involving fan forces added to ship decks to simulate sails to assess the course keeping, seakeeping and manoeuvring performance of a wind powered ship. For conventional motor ships there are well established test methods and knowledge on how to scale the results from model to full-scale. For a wind propelled ship however, the driving force is no longer located at the propeller shaft but high above deck and at another longitudinal position that could vary with true wind angle and speed. Moreover, there is a large side force coming from the aerodynamic forces of the wingsails that needs to be counteracted with lifting surfaces underwater. The side-force and yaw moment are much more prominent than in conventional vessels. The combination of those factors will influence the manoeuvrability and course keeping, especially in waves. Having built up the research tools for predicting and simulating the behaviour of a full-scale vessel, making the model sail in a similar way as predicted for the full-scale vessel remains a challenge because of the difference between Froude scaling and Reynolds scaling applicable for the hull and lifting surfaces respectively. Using Computational Fluid Dynamics (CFD) to understand the scale effects in model tests for a wind powered ship and developing a methodology for determining the fan parameters that correctly model the ships behaviour and performance are the key objectives of the research study. The art of model testing encompasses the need to learn from different techniques to ultimately achieve the best agreement between model tests and full-scale results in terms of accuracy, repeatability, cost, and speed. Learning from preliminary experimental tests, through studies on CFD and ultimately paving the way to new testing methodologies is the main aim of the current paper.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The art of model testing: Using CFD to adapt traditional tank testing techniques to a new era of wind propelled shipping\",\"authors\":\"L. Marimon Giovannetti, F. Gerhardt, M. Kjellberg, M. Alexandersson, S. Werner\",\"doi\":\"10.2218/marine2021.6815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid testing is an experimental technique that can be used to test ships and marine structures when both hydrodynamic and aerodynamic effects are important, for example for wind powered or wind assisted ships and sailing vessels. SSPA is currently developing an experimental method using hybrid testing involving fan forces added to ship decks to simulate sails to assess the course keeping, seakeeping and manoeuvring performance of a wind powered ship. For conventional motor ships there are well established test methods and knowledge on how to scale the results from model to full-scale. For a wind propelled ship however, the driving force is no longer located at the propeller shaft but high above deck and at another longitudinal position that could vary with true wind angle and speed. Moreover, there is a large side force coming from the aerodynamic forces of the wingsails that needs to be counteracted with lifting surfaces underwater. The side-force and yaw moment are much more prominent than in conventional vessels. The combination of those factors will influence the manoeuvrability and course keeping, especially in waves. Having built up the research tools for predicting and simulating the behaviour of a full-scale vessel, making the model sail in a similar way as predicted for the full-scale vessel remains a challenge because of the difference between Froude scaling and Reynolds scaling applicable for the hull and lifting surfaces respectively. Using Computational Fluid Dynamics (CFD) to understand the scale effects in model tests for a wind powered ship and developing a methodology for determining the fan parameters that correctly model the ships behaviour and performance are the key objectives of the research study. The art of model testing encompasses the need to learn from different techniques to ultimately achieve the best agreement between model tests and full-scale results in terms of accuracy, repeatability, cost, and speed. Learning from preliminary experimental tests, through studies on CFD and ultimately paving the way to new testing methodologies is the main aim of the current paper.\",\"PeriodicalId\":367395,\"journal\":{\"name\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2218/marine2021.6815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/marine2021.6815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合测试是一种实验技术,可用于测试船舶和海洋结构,当流体动力和空气动力效应都很重要时,例如风力或风力辅助船舶和帆船。SSPA目前正在开发一种实验方法,使用混合测试方法,将风扇力添加到船舶甲板上,模拟风帆,以评估风力船舶的航向保持、耐波性和操纵性能。对于传统的机动船舶,有完善的测试方法和知识,如何将结果从模型缩放到全尺寸。然而,对于风力推进的船舶,驱动力不再位于螺旋桨轴上,而是位于甲板上方的另一个纵向位置,该位置可能随真实风角和风速而变化。此外,翼帆的空气动力还会产生很大的侧力,需要用水下的升力面来抵消。侧力和偏航力矩比传统船舶要突出得多。这些因素的组合将影响机动性和航向保持,特别是在波浪中。在建立了预测和模拟全尺寸船舶行为的研究工具之后,由于分别适用于船体和升力表面的弗劳德缩放和雷诺兹缩放之间的差异,以与全尺寸船舶预测相似的方式制作模型帆船仍然是一项挑战。利用计算流体动力学(CFD)来了解风力船舶模型试验中的尺度效应,并开发一种确定风机参数的方法,以正确地模拟船舶的行为和性能,这是研究的关键目标。模型测试的艺术包括从不同的技术中学习的需要,以最终在模型测试和全尺寸结果之间实现准确性、可重复性、成本和速度方面的最佳一致。从初步的实验测试中学习,通过CFD研究,最终为新的测试方法铺平道路是本文的主要目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The art of model testing: Using CFD to adapt traditional tank testing techniques to a new era of wind propelled shipping
Hybrid testing is an experimental technique that can be used to test ships and marine structures when both hydrodynamic and aerodynamic effects are important, for example for wind powered or wind assisted ships and sailing vessels. SSPA is currently developing an experimental method using hybrid testing involving fan forces added to ship decks to simulate sails to assess the course keeping, seakeeping and manoeuvring performance of a wind powered ship. For conventional motor ships there are well established test methods and knowledge on how to scale the results from model to full-scale. For a wind propelled ship however, the driving force is no longer located at the propeller shaft but high above deck and at another longitudinal position that could vary with true wind angle and speed. Moreover, there is a large side force coming from the aerodynamic forces of the wingsails that needs to be counteracted with lifting surfaces underwater. The side-force and yaw moment are much more prominent than in conventional vessels. The combination of those factors will influence the manoeuvrability and course keeping, especially in waves. Having built up the research tools for predicting and simulating the behaviour of a full-scale vessel, making the model sail in a similar way as predicted for the full-scale vessel remains a challenge because of the difference between Froude scaling and Reynolds scaling applicable for the hull and lifting surfaces respectively. Using Computational Fluid Dynamics (CFD) to understand the scale effects in model tests for a wind powered ship and developing a methodology for determining the fan parameters that correctly model the ships behaviour and performance are the key objectives of the research study. The art of model testing encompasses the need to learn from different techniques to ultimately achieve the best agreement between model tests and full-scale results in terms of accuracy, repeatability, cost, and speed. Learning from preliminary experimental tests, through studies on CFD and ultimately paving the way to new testing methodologies is the main aim of the current paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternate Method For Determining Resistance Of Ship With Fouled Hull Numerical modelling of water ballast. Application to fish cages. Research of Root Cavitation Erosion Numerical Simulation of Strongly Coupled Liquid Fluids in Tanks inside of Floating Body and its Motions with Incoming Lateral Regular Waves CFD code comparison, verification and validation for a FOWT semi-submersible floater (OC4 Phase II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1