基于自适应卡尔曼滤波的钢轨液位动态检测数据处理

Jingbo Xu, Xiaohong Xu, Qiaowei Li
{"title":"基于自适应卡尔曼滤波的钢轨液位动态检测数据处理","authors":"Jingbo Xu, Xiaohong Xu, Qiaowei Li","doi":"10.1784/insi.2023.65.7.373","DOIUrl":null,"url":null,"abstract":"The inspection of the geometrical parameters of rail tracks is an important aspect in the daily maintenance and safe running of railways. The rail level (superelevation) is one of the important indicators susceptible to measurement noise. In this paper, the principle of the Kalman filter\n is studied, an adaptive Kalman filter algorithm is designed for level (superelevation) dynamic inspection, the selection principle for the filtering parameters is discussed and the performance of the algorithm is verified through simulation tests and pushing experiments using a rail inspection\n trolley. From analysis of the measurement data, it is concluded that the trolley speed is an important factor affecting level (superelevation) inspection and an improved algorithm including the trolley speed is proposed to further improve the filtering ability. The algorithm is easy to implement\n and can be extended to dynamic rail inspection.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data processing for rail level dynamic inspection based on an adaptive Kalman filter\",\"authors\":\"Jingbo Xu, Xiaohong Xu, Qiaowei Li\",\"doi\":\"10.1784/insi.2023.65.7.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inspection of the geometrical parameters of rail tracks is an important aspect in the daily maintenance and safe running of railways. The rail level (superelevation) is one of the important indicators susceptible to measurement noise. In this paper, the principle of the Kalman filter\\n is studied, an adaptive Kalman filter algorithm is designed for level (superelevation) dynamic inspection, the selection principle for the filtering parameters is discussed and the performance of the algorithm is verified through simulation tests and pushing experiments using a rail inspection\\n trolley. From analysis of the measurement data, it is concluded that the trolley speed is an important factor affecting level (superelevation) inspection and an improved algorithm including the trolley speed is proposed to further improve the filtering ability. The algorithm is easy to implement\\n and can be extended to dynamic rail inspection.\",\"PeriodicalId\":344397,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2023.65.7.373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.7.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轨道几何参数检测是铁路日常维护和安全运行的一个重要方面。钢轨高度(超标高)是测量噪声的重要指标之一。本文研究了卡尔曼滤波的工作原理,设计了一种适用于水平(超高程)动态检测的自适应卡尔曼滤波算法,讨论了滤波参数的选择原则,并通过仿真试验和轨道检测车的推压实验验证了算法的性能。通过对实测数据的分析,得出台车转速是影响液位(超高程)检测的重要因素,提出了一种包含台车转速的改进算法,以进一步提高滤波能力。该算法易于实现,可推广应用于钢轨动态检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data processing for rail level dynamic inspection based on an adaptive Kalman filter
The inspection of the geometrical parameters of rail tracks is an important aspect in the daily maintenance and safe running of railways. The rail level (superelevation) is one of the important indicators susceptible to measurement noise. In this paper, the principle of the Kalman filter is studied, an adaptive Kalman filter algorithm is designed for level (superelevation) dynamic inspection, the selection principle for the filtering parameters is discussed and the performance of the algorithm is verified through simulation tests and pushing experiments using a rail inspection trolley. From analysis of the measurement data, it is concluded that the trolley speed is an important factor affecting level (superelevation) inspection and an improved algorithm including the trolley speed is proposed to further improve the filtering ability. The algorithm is easy to implement and can be extended to dynamic rail inspection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criterion analysis-based artificial intelligence system for condition monitoring of electrical transformers MFL detection of adjacent pipeline defects: a finite element simulation of signal characteristics A multi-frequency balanced electromagnetic field measurement for arbitrary angles of pipeline cracks with high sensitivity Ultrasonic total focusing method for internal defects in composite insulators Developments in ultrasonic and eddy current testing in the 1970s and 1980s with emphasis on the requirements of the UK nuclear power industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1