整合反应性行为和计划:通过状态机任务的预测性准备优化执行时间

A. Schierl, A. Hoffmann, Ludwig Nägele, W. Reif
{"title":"整合反应性行为和计划:通过状态机任务的预测性准备优化执行时间","authors":"A. Schierl, A. Hoffmann, Ludwig Nägele, W. Reif","doi":"10.1109/IRC.2018.00022","DOIUrl":null,"url":null,"abstract":"Tasks that change the physical state of a robot take a considerable amount of time to execute. However, many robot applications spend the execution time waiting, although the following tasks might require time to prepare. This paper proposes to amend tasks with a description of their expected outcomes, which allows planning successive tasks based on this information. The suggested approach allows sequential and parallel composition of tasks, as well as reactive behavior modeled as state machines. The paper describes the means of modeling and executing these tasks, details different possibilities of planning in state machine tasks, and evaluates the benefits achievable using the approach.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating Reactive Behavior and Planning: Optimizing Execution Time Through Predictive Preparation of State Machine Tasks\",\"authors\":\"A. Schierl, A. Hoffmann, Ludwig Nägele, W. Reif\",\"doi\":\"10.1109/IRC.2018.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tasks that change the physical state of a robot take a considerable amount of time to execute. However, many robot applications spend the execution time waiting, although the following tasks might require time to prepare. This paper proposes to amend tasks with a description of their expected outcomes, which allows planning successive tasks based on this information. The suggested approach allows sequential and parallel composition of tasks, as well as reactive behavior modeled as state machines. The paper describes the means of modeling and executing these tasks, details different possibilities of planning in state machine tasks, and evaluates the benefits achievable using the approach.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

改变机器人物理状态的任务需要花费相当多的时间来执行。然而,许多机器人应用程序将执行时间花费在等待上,尽管以下任务可能需要时间来准备。本文提出用预期结果的描述来修改任务,从而允许基于该信息规划后续任务。建议的方法允许任务的顺序和并行组合,以及作为状态机建模的反应性行为。本文描述了建模和执行这些任务的方法,详细介绍了在状态机任务中规划的不同可能性,并评估了使用该方法可以实现的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating Reactive Behavior and Planning: Optimizing Execution Time Through Predictive Preparation of State Machine Tasks
Tasks that change the physical state of a robot take a considerable amount of time to execute. However, many robot applications spend the execution time waiting, although the following tasks might require time to prepare. This paper proposes to amend tasks with a description of their expected outcomes, which allows planning successive tasks based on this information. The suggested approach allows sequential and parallel composition of tasks, as well as reactive behavior modeled as state machines. The paper describes the means of modeling and executing these tasks, details different possibilities of planning in state machine tasks, and evaluates the benefits achievable using the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1