{"title":"用六西格玛方法改进包装行业层压工艺结果的质量","authors":"Renaldhi Dwidinda Suharno, T. Zagloel","doi":"10.1145/3364335.3364372","DOIUrl":null,"url":null,"abstract":"The production of quality plastic packaging is very important for companies to gain benefits that can be obtained if the quality of the product complies with the prescribed standards. This study aims to reduce losses that occur due to the presence of defective products in Jelly packaging products. Six Sigma methods through DMAIC stages (Define, Measure, Analyze, Improve, and Control) are used to find solutions and improve product quality. Based on the calculation of defective product data, it is known that Uneven surface defects, wrinkled defects, and Pitch Unstd defects are the highest number of defects. In the measure phase, the DPMO (Defects Per Million Opportunities) value were 32707.271 defect units with a value of 3.34 sigma. Failure Mode and Effect Analysis (FMEA) is used to determine the potential risk of failure from a factor that gets a high value. Improvements use the 5S approach in the form of a maintenance check sheet on the Tandem Extrusion Lamination Machine and work standards of Workstation in the lamination process. After repairs, the DPMO value drops to 7272.111 defect units and the sigma value rises to 3.94 sigma. Changes in sigma values that occur amounted to 0.60. Control can be done with the inspection and checks in each process so that the number of defects can continue to decrease. After improvement, the results show a decrease in the number and percentage of defects, which previously reached a number of 5.89% towards 1.31%.","PeriodicalId":403515,"journal":{"name":"Proceedings of the 5th International Conference on Industrial and Business Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quality Improvement of Lamination Process Results in the Packaging Industry by Using the Six Sigma Method\",\"authors\":\"Renaldhi Dwidinda Suharno, T. Zagloel\",\"doi\":\"10.1145/3364335.3364372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The production of quality plastic packaging is very important for companies to gain benefits that can be obtained if the quality of the product complies with the prescribed standards. This study aims to reduce losses that occur due to the presence of defective products in Jelly packaging products. Six Sigma methods through DMAIC stages (Define, Measure, Analyze, Improve, and Control) are used to find solutions and improve product quality. Based on the calculation of defective product data, it is known that Uneven surface defects, wrinkled defects, and Pitch Unstd defects are the highest number of defects. In the measure phase, the DPMO (Defects Per Million Opportunities) value were 32707.271 defect units with a value of 3.34 sigma. Failure Mode and Effect Analysis (FMEA) is used to determine the potential risk of failure from a factor that gets a high value. Improvements use the 5S approach in the form of a maintenance check sheet on the Tandem Extrusion Lamination Machine and work standards of Workstation in the lamination process. After repairs, the DPMO value drops to 7272.111 defect units and the sigma value rises to 3.94 sigma. Changes in sigma values that occur amounted to 0.60. Control can be done with the inspection and checks in each process so that the number of defects can continue to decrease. After improvement, the results show a decrease in the number and percentage of defects, which previously reached a number of 5.89% towards 1.31%.\",\"PeriodicalId\":403515,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Industrial and Business Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Industrial and Business Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3364335.3364372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Industrial and Business Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3364335.3364372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quality Improvement of Lamination Process Results in the Packaging Industry by Using the Six Sigma Method
The production of quality plastic packaging is very important for companies to gain benefits that can be obtained if the quality of the product complies with the prescribed standards. This study aims to reduce losses that occur due to the presence of defective products in Jelly packaging products. Six Sigma methods through DMAIC stages (Define, Measure, Analyze, Improve, and Control) are used to find solutions and improve product quality. Based on the calculation of defective product data, it is known that Uneven surface defects, wrinkled defects, and Pitch Unstd defects are the highest number of defects. In the measure phase, the DPMO (Defects Per Million Opportunities) value were 32707.271 defect units with a value of 3.34 sigma. Failure Mode and Effect Analysis (FMEA) is used to determine the potential risk of failure from a factor that gets a high value. Improvements use the 5S approach in the form of a maintenance check sheet on the Tandem Extrusion Lamination Machine and work standards of Workstation in the lamination process. After repairs, the DPMO value drops to 7272.111 defect units and the sigma value rises to 3.94 sigma. Changes in sigma values that occur amounted to 0.60. Control can be done with the inspection and checks in each process so that the number of defects can continue to decrease. After improvement, the results show a decrease in the number and percentage of defects, which previously reached a number of 5.89% towards 1.31%.