图结构估计神经网络

Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, C. Shi, Xing Xie
{"title":"图结构估计神经网络","authors":"Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, C. Shi, Xing Xie","doi":"10.1145/3442381.3449952","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have drawn considerable attention in recent years and achieved outstanding performance in many tasks. Most empirical studies of GNNs assume that the observed graph represents a complete and accurate picture of node relationship. However, this fundamental assumption cannot always be satisfied, since the real-world graphs from complex systems are error-prone and may not be compatible with the properties of GNNs. Therefore, GNNs solely relying on original graph may cause unsatisfactory results, one typical example of which is that GNNs perform well on graphs with homophily while fail on the disassortative situation. In this paper, we propose graph estimation neural networks GEN, which estimates graph structure for GNNs. Specifically, our GEN presents a structure model to fit the mechanism of GNNs by generating graphs with community structure, and an observation model that injects multifaceted observations into calculating the posterior distribution of graphs and is the first to incorporate multi-order neighborhood information. With above two models, the estimation of graph is implemented based on Bayesian inference to maximize the posterior probability, which attains mutual optimization with GNN parameters in an iterative framework. To comprehensively evaluate the performance of GEN, we perform a set of experiments on several benchmark datasets with different homophily and a synthetic dataset, where the experimental results demonstrate the effectiveness of our GEN and rationality of the estimated graph.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Graph Structure Estimation Neural Networks\",\"authors\":\"Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, C. Shi, Xing Xie\",\"doi\":\"10.1145/3442381.3449952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Neural Networks (GNNs) have drawn considerable attention in recent years and achieved outstanding performance in many tasks. Most empirical studies of GNNs assume that the observed graph represents a complete and accurate picture of node relationship. However, this fundamental assumption cannot always be satisfied, since the real-world graphs from complex systems are error-prone and may not be compatible with the properties of GNNs. Therefore, GNNs solely relying on original graph may cause unsatisfactory results, one typical example of which is that GNNs perform well on graphs with homophily while fail on the disassortative situation. In this paper, we propose graph estimation neural networks GEN, which estimates graph structure for GNNs. Specifically, our GEN presents a structure model to fit the mechanism of GNNs by generating graphs with community structure, and an observation model that injects multifaceted observations into calculating the posterior distribution of graphs and is the first to incorporate multi-order neighborhood information. With above two models, the estimation of graph is implemented based on Bayesian inference to maximize the posterior probability, which attains mutual optimization with GNN parameters in an iterative framework. To comprehensively evaluate the performance of GEN, we perform a set of experiments on several benchmark datasets with different homophily and a synthetic dataset, where the experimental results demonstrate the effectiveness of our GEN and rationality of the estimated graph.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

近年来,图神经网络(GNNs)在许多任务中取得了优异的表现,受到了广泛的关注。大多数gnn的实证研究都假设观察到的图代表了节点关系的完整和准确的图像。然而,这个基本假设并不总是被满足,因为来自复杂系统的真实世界图形容易出错,并且可能与gnn的特性不兼容。因此,单纯依赖原始图的gnn可能会导致不满意的结果,其中一个典型的例子是gnn在同质图上表现良好,而在非配图上表现不佳。本文提出了图估计神经网络GEN,用于估计gnn的图结构。具体而言,我们的GEN提出了一个通过生成具有社区结构的图来拟合gnn机制的结构模型,以及一个将多方面观测值注入计算图的后验分布并首次纳入多阶邻域信息的观测模型。在上述两种模型中,图的估计都是基于贝叶斯推理来实现后验概率最大化,在迭代框架内实现了与GNN参数的相互优化。为了全面评估GEN算法的性能,我们在几个不同同质性的基准数据集和一个合成数据集上进行了一组实验,实验结果证明了我们的GEN算法的有效性和估计图的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Structure Estimation Neural Networks
Graph Neural Networks (GNNs) have drawn considerable attention in recent years and achieved outstanding performance in many tasks. Most empirical studies of GNNs assume that the observed graph represents a complete and accurate picture of node relationship. However, this fundamental assumption cannot always be satisfied, since the real-world graphs from complex systems are error-prone and may not be compatible with the properties of GNNs. Therefore, GNNs solely relying on original graph may cause unsatisfactory results, one typical example of which is that GNNs perform well on graphs with homophily while fail on the disassortative situation. In this paper, we propose graph estimation neural networks GEN, which estimates graph structure for GNNs. Specifically, our GEN presents a structure model to fit the mechanism of GNNs by generating graphs with community structure, and an observation model that injects multifaceted observations into calculating the posterior distribution of graphs and is the first to incorporate multi-order neighborhood information. With above two models, the estimation of graph is implemented based on Bayesian inference to maximize the posterior probability, which attains mutual optimization with GNN parameters in an iterative framework. To comprehensively evaluate the performance of GEN, we perform a set of experiments on several benchmark datasets with different homophily and a synthetic dataset, where the experimental results demonstrate the effectiveness of our GEN and rationality of the estimated graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1