非朗伯曲面阴影形状的新公式

Abdelrehim H. Ahmed, A. Farag
{"title":"非朗伯曲面阴影形状的新公式","authors":"Abdelrehim H. Ahmed, A. Farag","doi":"10.1109/CVPR.2006.35","DOIUrl":null,"url":null,"abstract":"Lambert’s model for diffuse reflection is a main assumption in most of shape from shading (SFS) literature. Even with this simplified model, the SFS is still a difficult problem. Nevertheless, Lambert’s model has been proven to be an inaccurate approximation of the diffuse component of the surface reflectance. In this paper, we propose a new solution of the SFS problem based on a more comprehensive diffuse reflectance model: the Oren and Nayar model. In this work, we slightly modify this more realistic model in order to take into account the attenuation of the illumination due to distance. Using the modified non-Lambertian reflectance, we design a new explicit Partial Differential Equation (PDE) and then solve it using Lax-Friedrichs Sweeping method. Our experiments on synthetic data show that the proposed modeling gives a unique solution without any information about the height at the singular points of the surface. Additional results for real data are presented to show the efficiency of the proposed method . To the best of our knowledge, this is the first non-Lambertian SFS formulation that eliminates the concave/convex ambiguity which is a well known problem in SFS.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"A New Formulation for Shape from Shading for Non-Lambertian Surfaces\",\"authors\":\"Abdelrehim H. Ahmed, A. Farag\",\"doi\":\"10.1109/CVPR.2006.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lambert’s model for diffuse reflection is a main assumption in most of shape from shading (SFS) literature. Even with this simplified model, the SFS is still a difficult problem. Nevertheless, Lambert’s model has been proven to be an inaccurate approximation of the diffuse component of the surface reflectance. In this paper, we propose a new solution of the SFS problem based on a more comprehensive diffuse reflectance model: the Oren and Nayar model. In this work, we slightly modify this more realistic model in order to take into account the attenuation of the illumination due to distance. Using the modified non-Lambertian reflectance, we design a new explicit Partial Differential Equation (PDE) and then solve it using Lax-Friedrichs Sweeping method. Our experiments on synthetic data show that the proposed modeling gives a unique solution without any information about the height at the singular points of the surface. Additional results for real data are presented to show the efficiency of the proposed method . To the best of our knowledge, this is the first non-Lambertian SFS formulation that eliminates the concave/convex ambiguity which is a well known problem in SFS.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

漫反射的兰伯特模型是遮阳(SFS)文献中大多数形状的主要假设。即使有了这个简化的模型,SFS仍然是一个难题。然而,兰伯特的模型已被证明是表面反射率漫反射分量的不准确近似值。在本文中,我们提出了一种基于更全面漫反射模型的SFS问题的新解:Oren和Nayar模型。在这项工作中,我们稍微修改了这个更现实的模型,以便考虑到由于距离引起的照明衰减。利用改进的非朗伯反射率,设计了一个新的显式偏微分方程(PDE),然后用Lax-Friedrichs扫描法求解。我们在合成数据上的实验表明,所提出的模型给出了一个唯一的解,不需要任何关于表面奇异点高度的信息。实际数据的结果表明了该方法的有效性。据我们所知,这是第一个消除了凹凸模糊的非朗伯SFS公式,这是SFS中一个众所周知的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Formulation for Shape from Shading for Non-Lambertian Surfaces
Lambert’s model for diffuse reflection is a main assumption in most of shape from shading (SFS) literature. Even with this simplified model, the SFS is still a difficult problem. Nevertheless, Lambert’s model has been proven to be an inaccurate approximation of the diffuse component of the surface reflectance. In this paper, we propose a new solution of the SFS problem based on a more comprehensive diffuse reflectance model: the Oren and Nayar model. In this work, we slightly modify this more realistic model in order to take into account the attenuation of the illumination due to distance. Using the modified non-Lambertian reflectance, we design a new explicit Partial Differential Equation (PDE) and then solve it using Lax-Friedrichs Sweeping method. Our experiments on synthetic data show that the proposed modeling gives a unique solution without any information about the height at the singular points of the surface. Additional results for real data are presented to show the efficiency of the proposed method . To the best of our knowledge, this is the first non-Lambertian SFS formulation that eliminates the concave/convex ambiguity which is a well known problem in SFS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1