Vahid Khojasteh Lazarjan, M. N. Khiarak, A. B. Gashti, A. Garnier, B. Gosselin
{"title":"可见光和近红外波段小型化无线细胞分光光度计平台","authors":"Vahid Khojasteh Lazarjan, M. N. Khiarak, A. B. Gashti, A. Garnier, B. Gosselin","doi":"10.1109/LSC.2018.8572252","DOIUrl":null,"url":null,"abstract":"In this paper, a new miniaturized wireless cell spectrophotometer is presented. This system can scan a sample, detect incoming light power and transmit corresponding data to a base station for further analysis in the range of 340 nm to 850 nm. In vitro measurement results with VERO E6 cells tagged with DAPI and Alexa Fluor488 are presented to demonstrate its performance. The proposed system uses two small Lithium-ion batteries that provide a 7.4 V supply voltage. The system's low power consumption (88 mW), its minimal use of hardware resources, and its total weight of 17 g incorporated into a small wireless platform make the proposed device suitable for real-time implementation in most common low-power cell spectrophotometer applications.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Miniaturized Wireless Cell Spectrophotometer Platform in Visible and Near-IR Range\",\"authors\":\"Vahid Khojasteh Lazarjan, M. N. Khiarak, A. B. Gashti, A. Garnier, B. Gosselin\",\"doi\":\"10.1109/LSC.2018.8572252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new miniaturized wireless cell spectrophotometer is presented. This system can scan a sample, detect incoming light power and transmit corresponding data to a base station for further analysis in the range of 340 nm to 850 nm. In vitro measurement results with VERO E6 cells tagged with DAPI and Alexa Fluor488 are presented to demonstrate its performance. The proposed system uses two small Lithium-ion batteries that provide a 7.4 V supply voltage. The system's low power consumption (88 mW), its minimal use of hardware resources, and its total weight of 17 g incorporated into a small wireless platform make the proposed device suitable for real-time implementation in most common low-power cell spectrophotometer applications.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miniaturized Wireless Cell Spectrophotometer Platform in Visible and Near-IR Range
In this paper, a new miniaturized wireless cell spectrophotometer is presented. This system can scan a sample, detect incoming light power and transmit corresponding data to a base station for further analysis in the range of 340 nm to 850 nm. In vitro measurement results with VERO E6 cells tagged with DAPI and Alexa Fluor488 are presented to demonstrate its performance. The proposed system uses two small Lithium-ion batteries that provide a 7.4 V supply voltage. The system's low power consumption (88 mW), its minimal use of hardware resources, and its total weight of 17 g incorporated into a small wireless platform make the proposed device suitable for real-time implementation in most common low-power cell spectrophotometer applications.