一种基于光轴扫描的三维场景采集与重建系统

Jiaqing Dong, Zilong Li, Xuan Liu, Wenhua Zhong, Guijun Wang, Qiegen Liu, Xianlin Song
{"title":"一种基于光轴扫描的三维场景采集与重建系统","authors":"Jiaqing Dong, Zilong Li, Xuan Liu, Wenhua Zhong, Guijun Wang, Qiegen Liu, Xianlin Song","doi":"10.1117/12.2685016","DOIUrl":null,"url":null,"abstract":"In recent years, three-dimensional (3D) display technology has developed rapidly, and it is widely used in education, medical, military and other fields. 3D holographic display is regarded as the ultimate solution of 3D display. However, the lack of 3D content is one of the challenges that has been faced by 3D holographic display. The traditional method uses light-field camera and RGB-D camera to obtain 3D information of real scene, which has the problems of high-system complexity and long-time consumption. Here, we proposed a 3D scene acquisition and reconstruction system based on optical axial scanning. First an electrically tunable lens (ETL) was used for high-speed focus shift (up to 2.5 ms). A CCD camera was synchronized with the ETL to acquire multi-focused image sequence of real scene. Then, Tenengrad operator was used to obtain the focusing area of each multi-focused image, and the 3D image were obtained. Finally, the Computer-generated Hologram (CGH) can be obtained by the layer-based diffraction algorithm. The CGH was loaded onto the space light modulator to reconstruct the 3D holographic image. The experimental results verify the feasibility of the system. This method will expand the application of 3D holographic display in the field of education, advertising, entertainment, and other fields.","PeriodicalId":184319,"journal":{"name":"Optical Frontiers","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D scene acquisition and reconstruction system via optical axial scanning\",\"authors\":\"Jiaqing Dong, Zilong Li, Xuan Liu, Wenhua Zhong, Guijun Wang, Qiegen Liu, Xianlin Song\",\"doi\":\"10.1117/12.2685016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, three-dimensional (3D) display technology has developed rapidly, and it is widely used in education, medical, military and other fields. 3D holographic display is regarded as the ultimate solution of 3D display. However, the lack of 3D content is one of the challenges that has been faced by 3D holographic display. The traditional method uses light-field camera and RGB-D camera to obtain 3D information of real scene, which has the problems of high-system complexity and long-time consumption. Here, we proposed a 3D scene acquisition and reconstruction system based on optical axial scanning. First an electrically tunable lens (ETL) was used for high-speed focus shift (up to 2.5 ms). A CCD camera was synchronized with the ETL to acquire multi-focused image sequence of real scene. Then, Tenengrad operator was used to obtain the focusing area of each multi-focused image, and the 3D image were obtained. Finally, the Computer-generated Hologram (CGH) can be obtained by the layer-based diffraction algorithm. The CGH was loaded onto the space light modulator to reconstruct the 3D holographic image. The experimental results verify the feasibility of the system. This method will expand the application of 3D holographic display in the field of education, advertising, entertainment, and other fields.\",\"PeriodicalId\":184319,\"journal\":{\"name\":\"Optical Frontiers\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,三维(3D)显示技术发展迅速,广泛应用于教育、医疗、军事等领域。三维全息显示被认为是三维显示的终极解决方案。然而,缺乏3D内容是3D全息显示所面临的挑战之一。传统方法采用光场相机和RGB-D相机获取真实场景的三维信息,存在系统复杂度高、消耗时间长等问题。本文提出了一种基于光轴扫描的三维场景采集与重建系统。首先,电可调镜头(ETL)用于高速聚焦(高达2.5毫秒)。将CCD相机与ETL同步,获取真实场景的多聚焦图像序列。然后,利用Tenengrad算子求出各多聚焦图像的聚焦区域,得到三维图像;最后,利用基于层的衍射算法获得计算机生成全息图(CGH)。将CGH加载到空间光调制器上重建三维全息图像。实验结果验证了该系统的可行性。这种方法将扩大3D全息显示在教育、广告、娱乐等领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 3D scene acquisition and reconstruction system via optical axial scanning
In recent years, three-dimensional (3D) display technology has developed rapidly, and it is widely used in education, medical, military and other fields. 3D holographic display is regarded as the ultimate solution of 3D display. However, the lack of 3D content is one of the challenges that has been faced by 3D holographic display. The traditional method uses light-field camera and RGB-D camera to obtain 3D information of real scene, which has the problems of high-system complexity and long-time consumption. Here, we proposed a 3D scene acquisition and reconstruction system based on optical axial scanning. First an electrically tunable lens (ETL) was used for high-speed focus shift (up to 2.5 ms). A CCD camera was synchronized with the ETL to acquire multi-focused image sequence of real scene. Then, Tenengrad operator was used to obtain the focusing area of each multi-focused image, and the 3D image were obtained. Finally, the Computer-generated Hologram (CGH) can be obtained by the layer-based diffraction algorithm. The CGH was loaded onto the space light modulator to reconstruct the 3D holographic image. The experimental results verify the feasibility of the system. This method will expand the application of 3D holographic display in the field of education, advertising, entertainment, and other fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent measuring device and method for large grinding wheel size Fast high-resolution imaging combining deep learning and single-pixel imaging Anomalous wetting behaviors of hierarchical micro-nanostructures parallelly fabricated by ultrafast laser pulses on titanium Enzyme-free photoelectrochemical sensing of glucose based on the TiO2/CuO heterojunction Development of space-borne transportable high-finesse Fabry–Pérot cavity and its performance in ultra-stable laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1