利用高维空间图嵌入作为图算法的启发式算法

Peter Oostema, F. Franchetti
{"title":"利用高维空间图嵌入作为图算法的启发式算法","authors":"Peter Oostema, F. Franchetti","doi":"10.1109/IPDPSW52791.2021.00086","DOIUrl":null,"url":null,"abstract":"Spatial graph embedding is a technique for placing graphs in space used for visualization and graph analytics. The general goal is to place connected nodes close together while spreading apart all others. Previous work has looked at spatial graph embedding in 2 or 3 dimensions. These used high performance libraries and fast algorithms for N-body simulation. We expand into higher dimensions to find what it can be useful for. Using an arbitrary number of dimensions allows all unweighted graph to have exact edge lengths, as n nodes can all be one distance part in a n − 1 dimensional simplex. This increases the complexity of the simulation, so we provide an efficient GPU implementation in high dimensions. Although high dimensional embeddings cannot be easily visualized they find a consistent structure which can be used for graph analytics. Problems this has been used to solve are graph isomorphism and graph coloring.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leveraging High Dimensional Spatial Graph Embedding as a Heuristic for Graph Algorithms\",\"authors\":\"Peter Oostema, F. Franchetti\",\"doi\":\"10.1109/IPDPSW52791.2021.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial graph embedding is a technique for placing graphs in space used for visualization and graph analytics. The general goal is to place connected nodes close together while spreading apart all others. Previous work has looked at spatial graph embedding in 2 or 3 dimensions. These used high performance libraries and fast algorithms for N-body simulation. We expand into higher dimensions to find what it can be useful for. Using an arbitrary number of dimensions allows all unweighted graph to have exact edge lengths, as n nodes can all be one distance part in a n − 1 dimensional simplex. This increases the complexity of the simulation, so we provide an efficient GPU implementation in high dimensions. Although high dimensional embeddings cannot be easily visualized they find a consistent structure which can be used for graph analytics. Problems this has been used to solve are graph isomorphism and graph coloring.\",\"PeriodicalId\":170832,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW52791.2021.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

空间图嵌入是一种在空间中放置图的技术,用于可视化和图分析。一般目标是将连接的节点紧密地放在一起,同时分散所有其他节点。之前的研究着眼于二维或三维空间图嵌入。它们使用高性能库和快速算法进行n体仿真。我们扩展到更高的维度去寻找它的用处。使用任意数量的维度允许所有未加权的图具有精确的边缘长度,因为n个节点都可以是n - 1维单纯形中的一个距离部分。这增加了模拟的复杂性,因此我们提供了一个高效的高维GPU实现。虽然高维嵌入不能很容易地可视化,但它们找到了一个一致的结构,可以用于图形分析。用它来解决的问题是图同构和图着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging High Dimensional Spatial Graph Embedding as a Heuristic for Graph Algorithms
Spatial graph embedding is a technique for placing graphs in space used for visualization and graph analytics. The general goal is to place connected nodes close together while spreading apart all others. Previous work has looked at spatial graph embedding in 2 or 3 dimensions. These used high performance libraries and fast algorithms for N-body simulation. We expand into higher dimensions to find what it can be useful for. Using an arbitrary number of dimensions allows all unweighted graph to have exact edge lengths, as n nodes can all be one distance part in a n − 1 dimensional simplex. This increases the complexity of the simulation, so we provide an efficient GPU implementation in high dimensions. Although high dimensional embeddings cannot be easily visualized they find a consistent structure which can be used for graph analytics. Problems this has been used to solve are graph isomorphism and graph coloring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Division Multiplexing for FPGA Considering CNN Model Switch Time Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators On Data Parallelism Code Restructuring for HLS Targeting FPGAs Improving the MPI-IO Performance of Applications with Genetic Algorithm based Auto-tuning ScaDL 2021 Invited Speaker-3: AI for Social Impact: Results from multiagent reasoning and learning in the real world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1