{"title":"事件触发多环控制系统的阈值优化","authors":"Burak Demirel, V. Gupta, D. Quevedo, M. Johansson","doi":"10.1109/WODES.2016.7497849","DOIUrl":null,"url":null,"abstract":"This paper considers multiple linear stochastic control systems whose feedback loops are closed over a shared communication medium. A threshold-based event-triggering rule is used to transmit control commands from the controllers to the actuators, and network access is arbitrated using a static priority mechanism. Under these conditions, we study dead-beat control laws and compute the expected linear-quadratic loss of the closed-loop system as a function of the event-thresholds of the individual loops. Also, we present analytical expressions that quantify the trade-off between the communication cost and the control performance of such event-triggered control systems. Using a multi-dimensional exhaustive search method, we determine the set of event thresholds that attains the minimal expected linear-quadratic loss of the closed-loop systems. Simulation studies highlight the trade-off between the communication and control cost.","PeriodicalId":268613,"journal":{"name":"2016 13th International Workshop on Discrete Event Systems (WODES)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Threshold optimization of event-triggered multi-loop control systems\",\"authors\":\"Burak Demirel, V. Gupta, D. Quevedo, M. Johansson\",\"doi\":\"10.1109/WODES.2016.7497849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers multiple linear stochastic control systems whose feedback loops are closed over a shared communication medium. A threshold-based event-triggering rule is used to transmit control commands from the controllers to the actuators, and network access is arbitrated using a static priority mechanism. Under these conditions, we study dead-beat control laws and compute the expected linear-quadratic loss of the closed-loop system as a function of the event-thresholds of the individual loops. Also, we present analytical expressions that quantify the trade-off between the communication cost and the control performance of such event-triggered control systems. Using a multi-dimensional exhaustive search method, we determine the set of event thresholds that attains the minimal expected linear-quadratic loss of the closed-loop systems. Simulation studies highlight the trade-off between the communication and control cost.\",\"PeriodicalId\":268613,\"journal\":{\"name\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2016.7497849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Workshop on Discrete Event Systems (WODES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2016.7497849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Threshold optimization of event-triggered multi-loop control systems
This paper considers multiple linear stochastic control systems whose feedback loops are closed over a shared communication medium. A threshold-based event-triggering rule is used to transmit control commands from the controllers to the actuators, and network access is arbitrated using a static priority mechanism. Under these conditions, we study dead-beat control laws and compute the expected linear-quadratic loss of the closed-loop system as a function of the event-thresholds of the individual loops. Also, we present analytical expressions that quantify the trade-off between the communication cost and the control performance of such event-triggered control systems. Using a multi-dimensional exhaustive search method, we determine the set of event thresholds that attains the minimal expected linear-quadratic loss of the closed-loop systems. Simulation studies highlight the trade-off between the communication and control cost.