基于预测误差法和培养粒子群算法的电机作动器模型辨识

S. Kiviluoto, Ying Wu, K. Zenger, X. Gao
{"title":"基于预测误差法和培养粒子群算法的电机作动器模型辨识","authors":"S. Kiviluoto, Ying Wu, K. Zenger, X. Gao","doi":"10.1109/ICSENGT.2011.5993424","DOIUrl":null,"url":null,"abstract":"This paper discusses identification of an actuator model, which has been built inside a two-pole induction motor in order to control rotor vibrations. The methods used for identification are prediction error method and cultural particle swarm optimization with mutation. The first-mentioned method produces a black box model with correspondence to input-output measurements. The second method is used to identify parameters of a linear time-invariant state-space model, which is based on electromechanical equations. The results are compared in time domain and in frequency domain.","PeriodicalId":346890,"journal":{"name":"2011 IEEE International Conference on System Engineering and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of actuator model in an electrical machine by prediction error method and cultural particle swarm optimization\",\"authors\":\"S. Kiviluoto, Ying Wu, K. Zenger, X. Gao\",\"doi\":\"10.1109/ICSENGT.2011.5993424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses identification of an actuator model, which has been built inside a two-pole induction motor in order to control rotor vibrations. The methods used for identification are prediction error method and cultural particle swarm optimization with mutation. The first-mentioned method produces a black box model with correspondence to input-output measurements. The second method is used to identify parameters of a linear time-invariant state-space model, which is based on electromechanical equations. The results are compared in time domain and in frequency domain.\",\"PeriodicalId\":346890,\"journal\":{\"name\":\"2011 IEEE International Conference on System Engineering and Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on System Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENGT.2011.5993424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on System Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENGT.2011.5993424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了为控制转子振动而建立的双极感应电动机作动器模型的辨识问题。采用预测误差法和带突变的培养粒子群算法进行识别。第一个提到的方法产生一个与输入输出测量相对应的黑盒模型。第二种方法是基于机电方程的线性定常状态空间模型的参数辨识。结果在时域和频域进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of actuator model in an electrical machine by prediction error method and cultural particle swarm optimization
This paper discusses identification of an actuator model, which has been built inside a two-pole induction motor in order to control rotor vibrations. The methods used for identification are prediction error method and cultural particle swarm optimization with mutation. The first-mentioned method produces a black box model with correspondence to input-output measurements. The second method is used to identify parameters of a linear time-invariant state-space model, which is based on electromechanical equations. The results are compared in time domain and in frequency domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Changes in stem diameter of Coelogyne rochussenii and Epidendrum stamfordianum orchid in control growing climate Statistical approach for finding sensitive positions for condition based monitoring of reciprocating air compressors Classification of thumbprint using Artificial Neural Network (ANN) Detecting of zeros locations in a linear differential-difference equation A new proposed location registration procedure in next-generation mobile networks (NGMN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1