基于局部似然的logistic判别变量选择

Yoshisuke Nonaka, S. Konishi
{"title":"基于局部似然的logistic判别变量选择","authors":"Yoshisuke Nonaka, S. Konishi","doi":"10.14490/JJSS.38.431","DOIUrl":null,"url":null,"abstract":"We consider the variable selection problem in the nonlinear discriminant procedure using local likelihood. The local likelihood method is an effective technique for analyzing data with complex structure,and various bandwidth selection methods have been suggested in recent years. Variable selection in a nonlinear model,however, is more complex than bandwidth selection,since the optimal bandwidth depends on the combination of the variables. We propose a technique for variable selection using generalized information criteria in logistic discrimination based on local likelihood. We derive the logistic discrimination method with a sample covariance matrix to account for the correlation of the variables. Real data examples are given to examine the effectiveness of our technique.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VARIABLE SELECTION IN LOGISTIC DISCRIMINATION BASED ON LOCAL LIKELIHOOD\",\"authors\":\"Yoshisuke Nonaka, S. Konishi\",\"doi\":\"10.14490/JJSS.38.431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the variable selection problem in the nonlinear discriminant procedure using local likelihood. The local likelihood method is an effective technique for analyzing data with complex structure,and various bandwidth selection methods have been suggested in recent years. Variable selection in a nonlinear model,however, is more complex than bandwidth selection,since the optimal bandwidth depends on the combination of the variables. We propose a technique for variable selection using generalized information criteria in logistic discrimination based on local likelihood. We derive the logistic discrimination method with a sample covariance matrix to account for the correlation of the variables. Real data examples are given to examine the effectiveness of our technique.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.38.431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.38.431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用局部似然方法研究非线性判别过程中的变量选择问题。局部似然方法是分析复杂结构数据的一种有效方法,近年来提出了多种带宽选择方法。然而,非线性模型中的变量选择比带宽选择更复杂,因为最优带宽取决于变量的组合。我们提出了一种基于局部似然的逻辑判别中使用广义信息准则进行变量选择的技术。我们推导了用样本协方差矩阵来解释变量相关性的逻辑判别方法。通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VARIABLE SELECTION IN LOGISTIC DISCRIMINATION BASED ON LOCAL LIKELIHOOD
We consider the variable selection problem in the nonlinear discriminant procedure using local likelihood. The local likelihood method is an effective technique for analyzing data with complex structure,and various bandwidth selection methods have been suggested in recent years. Variable selection in a nonlinear model,however, is more complex than bandwidth selection,since the optimal bandwidth depends on the combination of the variables. We propose a technique for variable selection using generalized information criteria in logistic discrimination based on local likelihood. We derive the logistic discrimination method with a sample covariance matrix to account for the correlation of the variables. Real data examples are given to examine the effectiveness of our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1