紧凑型低成本可重构微波带通滤波器,采用桩加载多模谐振器,适用于WiMAX, 5G和WLAN应用

Yousif Mohsin Hasan, A. Abdullah, F. Alnahwi
{"title":"紧凑型低成本可重构微波带通滤波器,采用桩加载多模谐振器,适用于WiMAX, 5G和WLAN应用","authors":"Yousif Mohsin Hasan, A. Abdullah, F. Alnahwi","doi":"10.33971/bjes.22.1.9","DOIUrl":null,"url":null,"abstract":"This paper presents a compact, low-cost reconfigurable bandpass filter (BPF) for WiMax, 5G, and WLAN applications. The BPF consists of a half-wavelength resonator folded as C-shaped by a pair of symmetrical PIN diodes and a central quarter-wavelength resonator to form an E-shaped stub-loaded multiple-mode resonator (SL-MMR). The feed line is made of two subsections separated by a gap which acts as a fixed capacitance and allows the filter to have bandpass behavior. The proposed filter is modeled using the even and odd mode analysis to predict the locations of the resonant frequencies. The simulation results show that the filter covers the frequency range (3.38-3.95) GHz with a center frequency of 3.52 GHz at the ON state of a pair of PIN diodes. On the other hand, the BPF covers the frequency range (4.7-5.93) GHz with a center frequency of 5.2 GHz, at the OFF state of the diodes. The results also show a small insertion loss at the filter passband with two sharp transmission zeros at the stopband.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Compact Low-Cost Reconfigurable Microwave Bandpass Filter Using Stub-Loaded Multiple Mode Resonator for WiMAX, 5G and WLAN Applications\",\"authors\":\"Yousif Mohsin Hasan, A. Abdullah, F. Alnahwi\",\"doi\":\"10.33971/bjes.22.1.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a compact, low-cost reconfigurable bandpass filter (BPF) for WiMax, 5G, and WLAN applications. The BPF consists of a half-wavelength resonator folded as C-shaped by a pair of symmetrical PIN diodes and a central quarter-wavelength resonator to form an E-shaped stub-loaded multiple-mode resonator (SL-MMR). The feed line is made of two subsections separated by a gap which acts as a fixed capacitance and allows the filter to have bandpass behavior. The proposed filter is modeled using the even and odd mode analysis to predict the locations of the resonant frequencies. The simulation results show that the filter covers the frequency range (3.38-3.95) GHz with a center frequency of 3.52 GHz at the ON state of a pair of PIN diodes. On the other hand, the BPF covers the frequency range (4.7-5.93) GHz with a center frequency of 5.2 GHz, at the OFF state of the diodes. The results also show a small insertion loss at the filter passband with two sharp transmission zeros at the stopband.\",\"PeriodicalId\":150774,\"journal\":{\"name\":\"Basrah journal for engineering science\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah journal for engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33971/bjes.22.1.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.22.1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种适用于WiMax、5G和WLAN应用的紧凑、低成本、可重构带通滤波器(BPF)。BPF由一对对称PIN二极管折叠成c形的半波长谐振器和中央四分之一波长谐振器组成,形成e形存根负载多模谐振器(SL-MMR)。馈线由两个由间隙分隔的小节组成,该间隙充当固定电容并允许滤波器具有带通行为。该滤波器采用奇偶模态分析来预测谐振频率的位置。仿真结果表明,该滤波器的工作频率范围为3.38 ~ 3.95 GHz,在一对PIN二极管的ON状态下,中心频率为3.52 GHz。另一方面,在二极管关闭状态下,BPF覆盖频率范围(4.7-5.93)GHz,中心频率为5.2 GHz。结果还表明,在滤波器通带处插入损耗很小,在阻带处有两个明显的传输零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compact Low-Cost Reconfigurable Microwave Bandpass Filter Using Stub-Loaded Multiple Mode Resonator for WiMAX, 5G and WLAN Applications
This paper presents a compact, low-cost reconfigurable bandpass filter (BPF) for WiMax, 5G, and WLAN applications. The BPF consists of a half-wavelength resonator folded as C-shaped by a pair of symmetrical PIN diodes and a central quarter-wavelength resonator to form an E-shaped stub-loaded multiple-mode resonator (SL-MMR). The feed line is made of two subsections separated by a gap which acts as a fixed capacitance and allows the filter to have bandpass behavior. The proposed filter is modeled using the even and odd mode analysis to predict the locations of the resonant frequencies. The simulation results show that the filter covers the frequency range (3.38-3.95) GHz with a center frequency of 3.52 GHz at the ON state of a pair of PIN diodes. On the other hand, the BPF covers the frequency range (4.7-5.93) GHz with a center frequency of 5.2 GHz, at the OFF state of the diodes. The results also show a small insertion loss at the filter passband with two sharp transmission zeros at the stopband.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Façade Design on Visual Pollution Case study: Peshawa-Qazi Street (100 m) in Erbil A Review of Intelligent Techniques Based Speed Control of Brushless DC Motor (BLDC) Design and Implementation of Smart Petrol Station A Numerical Study of Blade Geometry Effects in a Vertical-Axes Wind Turbines Review on Energy Harvesting from Wind-Induced Column Vibrations: Theories, Mechanisms, and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1