基于多视角深度的三维重建的主动立体匹配基准

M. Jang, Seongmin Lee, Jiwoo Kang, Sanghoon Lee
{"title":"基于多视角深度的三维重建的主动立体匹配基准","authors":"M. Jang, Seongmin Lee, Jiwoo Kang, Sanghoon Lee","doi":"10.1109/ICSIPA52582.2021.9576787","DOIUrl":null,"url":null,"abstract":"With the advance of 3D entertainment, 3D reconstruction has been widely researched. Recently, for the 3D reconstruction, multi-view depth images are generally used due to the wide availability of commercial RGBD sensors. The depth image can be directly acquired from the specific sensor or estimated from the stereo images by using a stereo matching algorithm. The performance of the depth estimation using a specific sensor is only dependent on the sensor performance. However, since the stereo matching method is dependent on stereo matching accuracy, a more accurate depth can be obtained from the high accuracy stereo matching method. Therefore, we focus on the stereo matching method for estimating the depth image. In this paper, we present the benchmark on the active stereo matching method for 3D reconstruction. Through the quantitative and qualitative benchmarks, we analyze and visualize the depth estimation and 3D reconstruction results. By presenting the active stereo matching benchmark, we provide guidance for 3D reconstruction using multi-view depths.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Active Stereo Matching Benchmark for 3D Reconstruction using Multi-view Depths\",\"authors\":\"M. Jang, Seongmin Lee, Jiwoo Kang, Sanghoon Lee\",\"doi\":\"10.1109/ICSIPA52582.2021.9576787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advance of 3D entertainment, 3D reconstruction has been widely researched. Recently, for the 3D reconstruction, multi-view depth images are generally used due to the wide availability of commercial RGBD sensors. The depth image can be directly acquired from the specific sensor or estimated from the stereo images by using a stereo matching algorithm. The performance of the depth estimation using a specific sensor is only dependent on the sensor performance. However, since the stereo matching method is dependent on stereo matching accuracy, a more accurate depth can be obtained from the high accuracy stereo matching method. Therefore, we focus on the stereo matching method for estimating the depth image. In this paper, we present the benchmark on the active stereo matching method for 3D reconstruction. Through the quantitative and qualitative benchmarks, we analyze and visualize the depth estimation and 3D reconstruction results. By presenting the active stereo matching benchmark, we provide guidance for 3D reconstruction using multi-view depths.\",\"PeriodicalId\":326688,\"journal\":{\"name\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA52582.2021.9576787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着3D娱乐的发展,三维重建得到了广泛的研究。目前,由于商用RGBD传感器的广泛应用,对于三维重建,通常采用多视角深度图像。深度图像可以直接从特定传感器获取,也可以使用立体匹配算法从立体图像中估计。使用特定传感器的深度估计的性能仅取决于传感器的性能。然而,由于立体匹配方法依赖于立体匹配精度,因此高精度立体匹配方法可以获得更精确的深度。因此,我们重点研究了深度图像估计的立体匹配方法。本文提出了一种用于三维重建的主动立体匹配方法的基准。通过定量和定性的基准测试,对深度估计和三维重建结果进行分析和可视化。通过提出主动立体匹配基准,为多视角深度三维重建提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Stereo Matching Benchmark for 3D Reconstruction using Multi-view Depths
With the advance of 3D entertainment, 3D reconstruction has been widely researched. Recently, for the 3D reconstruction, multi-view depth images are generally used due to the wide availability of commercial RGBD sensors. The depth image can be directly acquired from the specific sensor or estimated from the stereo images by using a stereo matching algorithm. The performance of the depth estimation using a specific sensor is only dependent on the sensor performance. However, since the stereo matching method is dependent on stereo matching accuracy, a more accurate depth can be obtained from the high accuracy stereo matching method. Therefore, we focus on the stereo matching method for estimating the depth image. In this paper, we present the benchmark on the active stereo matching method for 3D reconstruction. Through the quantitative and qualitative benchmarks, we analyze and visualize the depth estimation and 3D reconstruction results. By presenting the active stereo matching benchmark, we provide guidance for 3D reconstruction using multi-view depths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personal Protective Equipment Detection with Live Camera A Fast and Unbiased Minimalistic Resampling Approach for the Particle Filter Sparse Checkerboard Corner Detection from Global Perspective Comparison of Dental Caries Level Images Classification Performance using KNN and SVM Methods An Insight Into the Rise Time of Exponential Smoothing for Speech Enhancement Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1