3.3 kW车载电池充电器电气故障模式及影响分析

S. Haghbin
{"title":"3.3 kW车载电池充电器电气故障模式及影响分析","authors":"S. Haghbin","doi":"10.1109/EPE.2016.7695374","DOIUrl":null,"url":null,"abstract":"Reliability is one important aspect for further improvement of power electronic converters. The improvement trend is towards a higher power density, and a higher efficiency with a lower price. Those performance indices are normally in contradiction with the reliability. A failure mode and effect analysis (FMEA) of a 3.3 kW onboard battery charger is presented for the electrical part of the charger. The FMEA results are used to prioritize, investigate and analyze important fault cases in semiconductors, dc bus capacitors and sensors. Possible reasons of each fault, appropriate fault detection methods, possible mitigation algorithms and some design improvements are shortly presented. The calculated risk numbers confirm that the reliability of the charger is considerable improved consequently.","PeriodicalId":119358,"journal":{"name":"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Electrical failure mode and effect analysis of a 3.3 kW onboard vehicle battery charger\",\"authors\":\"S. Haghbin\",\"doi\":\"10.1109/EPE.2016.7695374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliability is one important aspect for further improvement of power electronic converters. The improvement trend is towards a higher power density, and a higher efficiency with a lower price. Those performance indices are normally in contradiction with the reliability. A failure mode and effect analysis (FMEA) of a 3.3 kW onboard battery charger is presented for the electrical part of the charger. The FMEA results are used to prioritize, investigate and analyze important fault cases in semiconductors, dc bus capacitors and sensors. Possible reasons of each fault, appropriate fault detection methods, possible mitigation algorithms and some design improvements are shortly presented. The calculated risk numbers confirm that the reliability of the charger is considerable improved consequently.\",\"PeriodicalId\":119358,\"journal\":{\"name\":\"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE.2016.7695374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE.2016.7695374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

可靠性是电力电子变换器进一步改进的一个重要方面。改进的趋势是朝着更高的功率密度,更高的效率和更低的价格。这些性能指标通常与可靠性相矛盾。对3.3 kW车载电池充电器的电气部分进行了故障模式及影响分析(FMEA)。FMEA结果用于对半导体、直流母线电容器和传感器中的重要故障进行排序、调查和分析。简要介绍了每种故障的可能原因、适当的故障检测方法、可能的缓解算法和一些设计改进。计算出的风险数证实,充电器的可靠性得到了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical failure mode and effect analysis of a 3.3 kW onboard vehicle battery charger
Reliability is one important aspect for further improvement of power electronic converters. The improvement trend is towards a higher power density, and a higher efficiency with a lower price. Those performance indices are normally in contradiction with the reliability. A failure mode and effect analysis (FMEA) of a 3.3 kW onboard battery charger is presented for the electrical part of the charger. The FMEA results are used to prioritize, investigate and analyze important fault cases in semiconductors, dc bus capacitors and sensors. Possible reasons of each fault, appropriate fault detection methods, possible mitigation algorithms and some design improvements are shortly presented. The calculated risk numbers confirm that the reliability of the charger is considerable improved consequently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous control set space vector modulation for the 3×3 direct matrix converter Connector-less SiC power modules with integrated shunt — Low-profile design for low inductance and low cost DC microgrid power coordination based on fuzzy logic control Design and implementation of magnetron power supply and emulator Virtual synchronous-machine control of voltage-source converters in a low-voltage microgrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1