基于拉普拉斯- slim算法的DVB-S稀疏无源雷达成像

Yu Xiaofei, Tianyun Wang, Xinfei Lu, Chang Chen, Weidong Chen
{"title":"基于拉普拉斯- slim算法的DVB-S稀疏无源雷达成像","authors":"Yu Xiaofei, Tianyun Wang, Xinfei Lu, Chang Chen, Weidong Chen","doi":"10.1109/RADAR.2014.7060281","DOIUrl":null,"url":null,"abstract":"This paper studies sparse image reconstruction based on digital video broadcasting-satellites (DVB-S) system. The signal model is slightly different from our previous research [1-2], i.e. we consider the Swerling I model to characterize the target response, which means the scattering coefficients of the target resonate at different frequencies. Due to this effect, the performance of the conventional sparse recovery methods would decrease considerably. By utilizing the sparse learning via iterative minimization (SLIM) with the Laplace priors, we propose an effective algorithm named Laplace-SLIM to deal with the aforementioned joint sparse recovery problem, which can be seen as a kind of reweighted l1-norm algorithm. Simulation results verify the effectiveness of the proposed method and related analysis.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse passive radar imaging based on DVB-S using the Laplace-SLIM algorithm\",\"authors\":\"Yu Xiaofei, Tianyun Wang, Xinfei Lu, Chang Chen, Weidong Chen\",\"doi\":\"10.1109/RADAR.2014.7060281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies sparse image reconstruction based on digital video broadcasting-satellites (DVB-S) system. The signal model is slightly different from our previous research [1-2], i.e. we consider the Swerling I model to characterize the target response, which means the scattering coefficients of the target resonate at different frequencies. Due to this effect, the performance of the conventional sparse recovery methods would decrease considerably. By utilizing the sparse learning via iterative minimization (SLIM) with the Laplace priors, we propose an effective algorithm named Laplace-SLIM to deal with the aforementioned joint sparse recovery problem, which can be seen as a kind of reweighted l1-norm algorithm. Simulation results verify the effectiveness of the proposed method and related analysis.\",\"PeriodicalId\":317910,\"journal\":{\"name\":\"2014 International Radar Conference\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.7060281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于数字视频广播卫星(DVB-S)系统的稀疏图像重建。信号模型与我们之前的研究[1-2]略有不同,我们考虑了Swerling I模型来表征目标响应,即目标的散射系数在不同频率上共振。由于这种影响,传统的稀疏恢复方法的性能将大大降低。利用基于拉普拉斯先验的迭代最小化稀疏学习(SLIM),我们提出了一种有效的拉普拉斯-SLIM算法来处理上述联合稀疏恢复问题,该算法可以看作是一种重新加权的11范数算法。仿真结果验证了所提方法和相关分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse passive radar imaging based on DVB-S using the Laplace-SLIM algorithm
This paper studies sparse image reconstruction based on digital video broadcasting-satellites (DVB-S) system. The signal model is slightly different from our previous research [1-2], i.e. we consider the Swerling I model to characterize the target response, which means the scattering coefficients of the target resonate at different frequencies. Due to this effect, the performance of the conventional sparse recovery methods would decrease considerably. By utilizing the sparse learning via iterative minimization (SLIM) with the Laplace priors, we propose an effective algorithm named Laplace-SLIM to deal with the aforementioned joint sparse recovery problem, which can be seen as a kind of reweighted l1-norm algorithm. Simulation results verify the effectiveness of the proposed method and related analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-time high resolution passive WiFi Doppler-radar and its applications Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments Evaluation of the attenuation in L-band due to the foliage in function of the elevation angle Cognitive kriging metamodels for forest characterization and target detection Development of a planetary georadar prototype with agile beam (AGILE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1