用耦合字典学习方法去噪星系光谱

K. Fotiadou, Grigorios Tsagkatakis, B. Moraes, F. Abdalla, P. Tsakalides
{"title":"用耦合字典学习方法去噪星系光谱","authors":"K. Fotiadou, Grigorios Tsagkatakis, B. Moraes, F. Abdalla, P. Tsakalides","doi":"10.23919/EUSIPCO.2017.8081257","DOIUrl":null,"url":null,"abstract":"The Euclid satellite aims to measure accurately the global properties of the Universe, with particular emphasis on the properties of the mysterious Dark Energy that is driving the acceleration of its expansion. One of its two main observational probes relies on accurate measurements of the radial distances of galaxies through the identification of important features in their individual light spectra that are redshifted due to their receding velocity. However, several challenges for robust automated spectroscopic redshift estimation remain unsolved, one of which is the characterization of the types of spectra present in the observed galaxy population. This paper proposes a denoising technique that exploits the mathematical frameworks of Sparse Representations and Coupled Dictionary Learning, and tests it on simulated Euclid-like noisy spectroscopic templates. The reconstructed spectral profiles are able to improve the accuracy, reliability and robustness of automated redshift estimation methods. The key contribution of this work is the design of a novel model which considers coupled feature spaces, composed of high- and low-quality spectral profiles, when applied to the spectroscopic data denoising problem. The coupled dictionary learning technique is formulated within the context of the Alternating Direction Method of Multipliers, optimizing each variable via closed-form expressions. Experimental results suggest that the proposed powerful coupled dictionary learning scheme reconstructs successfully spectral profiles from their corresponding noisy versions, even with extreme noise scenarios.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Denoising galaxy spectra with coupled dictionary learning\",\"authors\":\"K. Fotiadou, Grigorios Tsagkatakis, B. Moraes, F. Abdalla, P. Tsakalides\",\"doi\":\"10.23919/EUSIPCO.2017.8081257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euclid satellite aims to measure accurately the global properties of the Universe, with particular emphasis on the properties of the mysterious Dark Energy that is driving the acceleration of its expansion. One of its two main observational probes relies on accurate measurements of the radial distances of galaxies through the identification of important features in their individual light spectra that are redshifted due to their receding velocity. However, several challenges for robust automated spectroscopic redshift estimation remain unsolved, one of which is the characterization of the types of spectra present in the observed galaxy population. This paper proposes a denoising technique that exploits the mathematical frameworks of Sparse Representations and Coupled Dictionary Learning, and tests it on simulated Euclid-like noisy spectroscopic templates. The reconstructed spectral profiles are able to improve the accuracy, reliability and robustness of automated redshift estimation methods. The key contribution of this work is the design of a novel model which considers coupled feature spaces, composed of high- and low-quality spectral profiles, when applied to the spectroscopic data denoising problem. The coupled dictionary learning technique is formulated within the context of the Alternating Direction Method of Multipliers, optimizing each variable via closed-form expressions. Experimental results suggest that the proposed powerful coupled dictionary learning scheme reconstructs successfully spectral profiles from their corresponding noisy versions, even with extreme noise scenarios.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

欧几里得卫星的目标是精确测量宇宙的整体特性,特别强调推动宇宙加速膨胀的神秘暗能量的特性。它的两个主要观测探测器之一依赖于对星系径向距离的精确测量,通过识别单个光谱中的重要特征,这些特征由于它们的后退速度而红移。然而,对于强大的自动化光谱红移估计来说,仍有几个挑战尚未解决,其中之一是观测星系群中存在的光谱类型的表征。本文提出了一种利用稀疏表示和耦合字典学习数学框架的去噪技术,并在模拟类欧几里德噪声光谱模板上进行了测试。重建的光谱轮廓能够提高自动红移估计方法的精度、可靠性和鲁棒性。这项工作的关键贡献在于设计了一种新的模型,该模型考虑了由高质量和低质量光谱轮廓组成的耦合特征空间,并将其应用于光谱数据去噪问题。耦合字典学习技术是在乘数交替方向法的背景下制定的,通过封闭形式的表达式优化每个变量。实验结果表明,即使在极端噪声情况下,所提出的强大的耦合字典学习方案也能成功地从相应的噪声版本重建光谱轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising galaxy spectra with coupled dictionary learning
The Euclid satellite aims to measure accurately the global properties of the Universe, with particular emphasis on the properties of the mysterious Dark Energy that is driving the acceleration of its expansion. One of its two main observational probes relies on accurate measurements of the radial distances of galaxies through the identification of important features in their individual light spectra that are redshifted due to their receding velocity. However, several challenges for robust automated spectroscopic redshift estimation remain unsolved, one of which is the characterization of the types of spectra present in the observed galaxy population. This paper proposes a denoising technique that exploits the mathematical frameworks of Sparse Representations and Coupled Dictionary Learning, and tests it on simulated Euclid-like noisy spectroscopic templates. The reconstructed spectral profiles are able to improve the accuracy, reliability and robustness of automated redshift estimation methods. The key contribution of this work is the design of a novel model which considers coupled feature spaces, composed of high- and low-quality spectral profiles, when applied to the spectroscopic data denoising problem. The coupled dictionary learning technique is formulated within the context of the Alternating Direction Method of Multipliers, optimizing each variable via closed-form expressions. Experimental results suggest that the proposed powerful coupled dictionary learning scheme reconstructs successfully spectral profiles from their corresponding noisy versions, even with extreme noise scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1