利用人工智能复制经验数据时提高拟合优度的方法

A. A. Moreb, Naif Nahi Alharbi
{"title":"利用人工智能复制经验数据时提高拟合优度的方法","authors":"A. A. Moreb, Naif Nahi Alharbi","doi":"10.46593/ijaera.2020.v05i12.001","DOIUrl":null,"url":null,"abstract":"Scientists and practitioners frequently resort to replicating empirical data when testing the validity of scientific theories or testing hypothesis. Commonly known probability distribution (Normal, Binomial, Exponential, etc.) are habitually assumed to fit the empirical data. To avoid complicated probability distributions, analysts find themselves tolerating poor values for the goodness of fit. In this paper, a methodology is introduced for replicating empirical data that succeeded in obtaining goodness of fit close to 100% compared to 87% goodness of fit using a known probability distribution. Moreover, Artificial Intelligence (AI) is developed spatially for this research to enhance accuracy further.","PeriodicalId":322509,"journal":{"name":"International Journal of Advanced Engineering Research and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodology to improve Goodness of Fit when Replicating Empirical Data utilizing Artificial Intelligence\",\"authors\":\"A. A. Moreb, Naif Nahi Alharbi\",\"doi\":\"10.46593/ijaera.2020.v05i12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientists and practitioners frequently resort to replicating empirical data when testing the validity of scientific theories or testing hypothesis. Commonly known probability distribution (Normal, Binomial, Exponential, etc.) are habitually assumed to fit the empirical data. To avoid complicated probability distributions, analysts find themselves tolerating poor values for the goodness of fit. In this paper, a methodology is introduced for replicating empirical data that succeeded in obtaining goodness of fit close to 100% compared to 87% goodness of fit using a known probability distribution. Moreover, Artificial Intelligence (AI) is developed spatially for this research to enhance accuracy further.\",\"PeriodicalId\":322509,\"journal\":{\"name\":\"International Journal of Advanced Engineering Research and Applications\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Engineering Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46593/ijaera.2020.v05i12.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Engineering Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46593/ijaera.2020.v05i12.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在检验科学理论或假设的有效性时,科学家和实践者经常求助于复制经验数据。通常假设已知的概率分布(正态分布、二项分布、指数分布等)拟合经验数据。为了避免复杂的概率分布,分析人员发现自己可以容忍较差的拟合优度值。本文介绍了一种方法,用于复制经验数据,成功地获得接近100%的拟合优度,而使用已知概率分布的拟合优度为87%。此外,为了进一步提高准确性,还在空间上开发了人工智能(AI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Methodology to improve Goodness of Fit when Replicating Empirical Data utilizing Artificial Intelligence
Scientists and practitioners frequently resort to replicating empirical data when testing the validity of scientific theories or testing hypothesis. Commonly known probability distribution (Normal, Binomial, Exponential, etc.) are habitually assumed to fit the empirical data. To avoid complicated probability distributions, analysts find themselves tolerating poor values for the goodness of fit. In this paper, a methodology is introduced for replicating empirical data that succeeded in obtaining goodness of fit close to 100% compared to 87% goodness of fit using a known probability distribution. Moreover, Artificial Intelligence (AI) is developed spatially for this research to enhance accuracy further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Decision Support Model for Prioritization of Safety Five Stars System Elements on Saudi Electricity Company using Integrated AHP and TOPSIS Approach A Deep Learning-Based Utilization Improvement Framework for Abdullah Hashim Industrial Gases & Equipment Co. Ltd Transportation Network Finding the Best Mathematical Forecasting Model for Ordering Non FMCG Items at an FMCG Retailer Analyzing E-Commerce effectiveness of SMEs Using SERVQUAL Model Students’ Learning Motivation with Virtual Pedagogy during COVID-19 in Saudi Arabia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1