Tatsuro Yonekura, Morimichi Furudate, Kanta Kanazawa, T. Miyoshi, H. Yoshida
{"title":"开发用于北极冰调查的自主探测器的尝试-在冰雪表面上移动问题的识别","authors":"Tatsuro Yonekura, Morimichi Furudate, Kanta Kanazawa, T. Miyoshi, H. Yoshida","doi":"10.1109/ICMA54519.2022.9855914","DOIUrl":null,"url":null,"abstract":"The goal of this project is to survey Arctic sea ice. In this paper, we present the design concepts of an Arctic Explorer (AE) that can recover from a stuck situation, drive on inclines, and drive on uneven terrains, which are expected when autonomic driving on an icy, snowy surface. Two different prototypes remotely operated small vehicle AEs had constructed to test three driving abilities on the icy and snowy surface; (1) a stuck situation, (2) an incline situation, and (3) an uneven surface. The results showed that the AE-I got stuck as expected on sherbet-like snow and flat, icy road surfaces with no unevenness. In addition, AE-I could run at low speeds (about 0.1 m/s) on the frozen surface with 2 cm unevenness. AE-II proceeded over uneven surfaces and ran a slope set at 15 degrees. These results suggest that stable traction was obtained by passive changes in the posture of the front and rear sections of AE-II.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attempt toward the development of autonomous explorer for arctic ice survey - Identification of issues for moving on icy and snowy surface\",\"authors\":\"Tatsuro Yonekura, Morimichi Furudate, Kanta Kanazawa, T. Miyoshi, H. Yoshida\",\"doi\":\"10.1109/ICMA54519.2022.9855914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this project is to survey Arctic sea ice. In this paper, we present the design concepts of an Arctic Explorer (AE) that can recover from a stuck situation, drive on inclines, and drive on uneven terrains, which are expected when autonomic driving on an icy, snowy surface. Two different prototypes remotely operated small vehicle AEs had constructed to test three driving abilities on the icy and snowy surface; (1) a stuck situation, (2) an incline situation, and (3) an uneven surface. The results showed that the AE-I got stuck as expected on sherbet-like snow and flat, icy road surfaces with no unevenness. In addition, AE-I could run at low speeds (about 0.1 m/s) on the frozen surface with 2 cm unevenness. AE-II proceeded over uneven surfaces and ran a slope set at 15 degrees. These results suggest that stable traction was obtained by passive changes in the posture of the front and rear sections of AE-II.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9855914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9855914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attempt toward the development of autonomous explorer for arctic ice survey - Identification of issues for moving on icy and snowy surface
The goal of this project is to survey Arctic sea ice. In this paper, we present the design concepts of an Arctic Explorer (AE) that can recover from a stuck situation, drive on inclines, and drive on uneven terrains, which are expected when autonomic driving on an icy, snowy surface. Two different prototypes remotely operated small vehicle AEs had constructed to test three driving abilities on the icy and snowy surface; (1) a stuck situation, (2) an incline situation, and (3) an uneven surface. The results showed that the AE-I got stuck as expected on sherbet-like snow and flat, icy road surfaces with no unevenness. In addition, AE-I could run at low speeds (about 0.1 m/s) on the frozen surface with 2 cm unevenness. AE-II proceeded over uneven surfaces and ran a slope set at 15 degrees. These results suggest that stable traction was obtained by passive changes in the posture of the front and rear sections of AE-II.