镍钛诺基拱楔支护的计算设计与分析

Tyler Stranburg, Yucheng Liu, H. Chander, A. Knight
{"title":"镍钛诺基拱楔支护的计算设计与分析","authors":"Tyler Stranburg, Yucheng Liu, H. Chander, A. Knight","doi":"10.1115/IMECE2018-86287","DOIUrl":null,"url":null,"abstract":"A nitinol-based arch wedge support (AWS) was designed using computational approach. Finite element analysis (FEA) was performed to on this design to assess the influence of loading, boundary conditions, and thickness on the mechanical response of the computer-aid design (CAD) model. Five loading conditions caused by different human movements, two boundary conditions, and three thicknesses are involved in this computational study. FEA results showed that the presented AWS design can resist forces caused by different human motions without generating any permanent deformation. The study features the first time to design and evaluate a thin-walled nitinol AWS model. The results of this study form the background of prototyping and experimental testing of the design in the next phase.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Design and Analysis of Nitinol-Based Arch Wedge Support\",\"authors\":\"Tyler Stranburg, Yucheng Liu, H. Chander, A. Knight\",\"doi\":\"10.1115/IMECE2018-86287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nitinol-based arch wedge support (AWS) was designed using computational approach. Finite element analysis (FEA) was performed to on this design to assess the influence of loading, boundary conditions, and thickness on the mechanical response of the computer-aid design (CAD) model. Five loading conditions caused by different human movements, two boundary conditions, and three thicknesses are involved in this computational study. FEA results showed that the presented AWS design can resist forces caused by different human motions without generating any permanent deformation. The study features the first time to design and evaluate a thin-walled nitinol AWS model. The results of this study form the background of prototyping and experimental testing of the design in the next phase.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用计算方法设计了一种镍钛镍基拱楔支撑(AWS)。对该设计进行了有限元分析(FEA),以评估载荷、边界条件和厚度对计算机辅助设计(CAD)模型力学响应的影响。计算研究涉及人体不同运动引起的5种载荷条件、2种边界条件和3种厚度。有限元分析结果表明,所提出的AWS设计可以抵抗不同人体运动引起的力,而不会产生任何永久变形。该研究首次设计和评估了薄壁镍钛诺AWS模型。本研究的结果为下一阶段设计的原型设计和实验测试奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Design and Analysis of Nitinol-Based Arch Wedge Support
A nitinol-based arch wedge support (AWS) was designed using computational approach. Finite element analysis (FEA) was performed to on this design to assess the influence of loading, boundary conditions, and thickness on the mechanical response of the computer-aid design (CAD) model. Five loading conditions caused by different human movements, two boundary conditions, and three thicknesses are involved in this computational study. FEA results showed that the presented AWS design can resist forces caused by different human motions without generating any permanent deformation. The study features the first time to design and evaluate a thin-walled nitinol AWS model. The results of this study form the background of prototyping and experimental testing of the design in the next phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering a Pool Ladder to Prevent Drownings in Above-Ground Pools Side Structure Integrity Research for Passenger Rail Equipment A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks Uncertainty Optimization Design of Vehicle Wheel Made of Long Glass Fiber Reinforced Thermoplastic Limit Load Analysis of As-Fabricated Pipe Bends With Low Ovality Under In-Plane Closing Moment Loading and Internal Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1