Tyler Stranburg, Yucheng Liu, H. Chander, A. Knight
{"title":"镍钛诺基拱楔支护的计算设计与分析","authors":"Tyler Stranburg, Yucheng Liu, H. Chander, A. Knight","doi":"10.1115/IMECE2018-86287","DOIUrl":null,"url":null,"abstract":"A nitinol-based arch wedge support (AWS) was designed using computational approach. Finite element analysis (FEA) was performed to on this design to assess the influence of loading, boundary conditions, and thickness on the mechanical response of the computer-aid design (CAD) model. Five loading conditions caused by different human movements, two boundary conditions, and three thicknesses are involved in this computational study. FEA results showed that the presented AWS design can resist forces caused by different human motions without generating any permanent deformation. The study features the first time to design and evaluate a thin-walled nitinol AWS model. The results of this study form the background of prototyping and experimental testing of the design in the next phase.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Design and Analysis of Nitinol-Based Arch Wedge Support\",\"authors\":\"Tyler Stranburg, Yucheng Liu, H. Chander, A. Knight\",\"doi\":\"10.1115/IMECE2018-86287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nitinol-based arch wedge support (AWS) was designed using computational approach. Finite element analysis (FEA) was performed to on this design to assess the influence of loading, boundary conditions, and thickness on the mechanical response of the computer-aid design (CAD) model. Five loading conditions caused by different human movements, two boundary conditions, and three thicknesses are involved in this computational study. FEA results showed that the presented AWS design can resist forces caused by different human motions without generating any permanent deformation. The study features the first time to design and evaluate a thin-walled nitinol AWS model. The results of this study form the background of prototyping and experimental testing of the design in the next phase.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Design and Analysis of Nitinol-Based Arch Wedge Support
A nitinol-based arch wedge support (AWS) was designed using computational approach. Finite element analysis (FEA) was performed to on this design to assess the influence of loading, boundary conditions, and thickness on the mechanical response of the computer-aid design (CAD) model. Five loading conditions caused by different human movements, two boundary conditions, and three thicknesses are involved in this computational study. FEA results showed that the presented AWS design can resist forces caused by different human motions without generating any permanent deformation. The study features the first time to design and evaluate a thin-walled nitinol AWS model. The results of this study form the background of prototyping and experimental testing of the design in the next phase.