D. Fabiani, A. Camprini, C. Vanga-Bouanga, M. Frechette
{"title":"含氧化石墨烯的LDPE纳米复合材料空间电荷积累的优化","authors":"D. Fabiani, A. Camprini, C. Vanga-Bouanga, M. Frechette","doi":"10.1109/NANO.2017.8117433","DOIUrl":null,"url":null,"abstract":"This paper deals with space charge accumulation of LDPE-based nanocomposites containing graphene oxide as nanofiller. Space charge measurements showed huge charge injection and accumulation in the base LDPE material. In particular, at room temperature a positive charge packet was observed moving rapidly from the anode to the cathode, enhancing space charge accumulation in the insulation bulk. On the contrary, space charge buildup was significantly reduced in nanocomposites with a filler content smaller than 0.1 wt%. Increasing temperature, the base material accumulate much less charge therefore the effect of the nanofiller becomes less evident than at room temperature.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of space charge accumulation in LDPE nanocomposites containing graphene oxide\",\"authors\":\"D. Fabiani, A. Camprini, C. Vanga-Bouanga, M. Frechette\",\"doi\":\"10.1109/NANO.2017.8117433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with space charge accumulation of LDPE-based nanocomposites containing graphene oxide as nanofiller. Space charge measurements showed huge charge injection and accumulation in the base LDPE material. In particular, at room temperature a positive charge packet was observed moving rapidly from the anode to the cathode, enhancing space charge accumulation in the insulation bulk. On the contrary, space charge buildup was significantly reduced in nanocomposites with a filler content smaller than 0.1 wt%. Increasing temperature, the base material accumulate much less charge therefore the effect of the nanofiller becomes less evident than at room temperature.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of space charge accumulation in LDPE nanocomposites containing graphene oxide
This paper deals with space charge accumulation of LDPE-based nanocomposites containing graphene oxide as nanofiller. Space charge measurements showed huge charge injection and accumulation in the base LDPE material. In particular, at room temperature a positive charge packet was observed moving rapidly from the anode to the cathode, enhancing space charge accumulation in the insulation bulk. On the contrary, space charge buildup was significantly reduced in nanocomposites with a filler content smaller than 0.1 wt%. Increasing temperature, the base material accumulate much less charge therefore the effect of the nanofiller becomes less evident than at room temperature.