{"title":"航空遥测的空时编码ARTM","authors":"Chad Josephson, E. Perrins, M. Rice","doi":"10.1109/MILCOM47813.2019.9020989","DOIUrl":null,"url":null,"abstract":"This paper shows that burst-based orthogonal spacetime block-coded ARTM CPM is capable of solving the two-antenna problem in aeronautical telemetry, but detection requires a prohibitively complex trellis detector. In single-input, single-output (SISO) applications, pulse truncation and state-space partitioning reduce the computational complexity of the trellis detector with only modest bit error rate (BER) performance penalties. In this paper it is shown that layering pulse truncation and state-space partition complexity-reducing techniques with a burst-based orthogonal space-time block-code does not introduce additional BER performance losses relative to the SISO case.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Space-Time Coded ARTM CPM for Aeronautical Telemetry\",\"authors\":\"Chad Josephson, E. Perrins, M. Rice\",\"doi\":\"10.1109/MILCOM47813.2019.9020989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows that burst-based orthogonal spacetime block-coded ARTM CPM is capable of solving the two-antenna problem in aeronautical telemetry, but detection requires a prohibitively complex trellis detector. In single-input, single-output (SISO) applications, pulse truncation and state-space partitioning reduce the computational complexity of the trellis detector with only modest bit error rate (BER) performance penalties. In this paper it is shown that layering pulse truncation and state-space partition complexity-reducing techniques with a burst-based orthogonal space-time block-code does not introduce additional BER performance losses relative to the SISO case.\",\"PeriodicalId\":371812,\"journal\":{\"name\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM47813.2019.9020989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9020989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Space-Time Coded ARTM CPM for Aeronautical Telemetry
This paper shows that burst-based orthogonal spacetime block-coded ARTM CPM is capable of solving the two-antenna problem in aeronautical telemetry, but detection requires a prohibitively complex trellis detector. In single-input, single-output (SISO) applications, pulse truncation and state-space partitioning reduce the computational complexity of the trellis detector with only modest bit error rate (BER) performance penalties. In this paper it is shown that layering pulse truncation and state-space partition complexity-reducing techniques with a burst-based orthogonal space-time block-code does not introduce additional BER performance losses relative to the SISO case.