农业建筑的模拟:预测季节性能源需求的机器学习方法

M. Ceccarelli, A. Barbaresi, Giulia Menichetti, Enrica Santolini, Marco Bovo, P. Tassinari, Francesco Barreca, D. Torreggiani
{"title":"农业建筑的模拟:预测季节性能源需求的机器学习方法","authors":"M. Ceccarelli, A. Barbaresi, Giulia Menichetti, Enrica Santolini, Marco Bovo, P. Tassinari, Francesco Barreca, D. Torreggiani","doi":"10.1109/MetroAgriFor55389.2022.9965083","DOIUrl":null,"url":null,"abstract":"A fast and reliable estimation of building energy need is essential in agricultural building design, nonetheless, a large number of simulations is required to obtain better energy saving solutions. The aim of this work is to understand if machine learning can substitute numerical simulations and speed up the building design process and assess the incidence of specific architectural elements. Supervised regression models has been trained and tested in a data-set of thousands simulations performed on a case-study agricultural building. Among the algorithms, the tree-based Extreme Gradient Boosting showed the best performance. A study on model explainability has been carried out using SHAP and features importance, which is fundamental to help academics and professionals devise better design strategies for both new constructions and retrofitting interventions.","PeriodicalId":374452,"journal":{"name":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulations in agricultural buildings: a machine learning approach to forecast seasonal energy need\",\"authors\":\"M. Ceccarelli, A. Barbaresi, Giulia Menichetti, Enrica Santolini, Marco Bovo, P. Tassinari, Francesco Barreca, D. Torreggiani\",\"doi\":\"10.1109/MetroAgriFor55389.2022.9965083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast and reliable estimation of building energy need is essential in agricultural building design, nonetheless, a large number of simulations is required to obtain better energy saving solutions. The aim of this work is to understand if machine learning can substitute numerical simulations and speed up the building design process and assess the incidence of specific architectural elements. Supervised regression models has been trained and tested in a data-set of thousands simulations performed on a case-study agricultural building. Among the algorithms, the tree-based Extreme Gradient Boosting showed the best performance. A study on model explainability has been carried out using SHAP and features importance, which is fundamental to help academics and professionals devise better design strategies for both new constructions and retrofitting interventions.\",\"PeriodicalId\":374452,\"journal\":{\"name\":\"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAgriFor55389.2022.9965083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor55389.2022.9965083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在农业建筑设计中,快速、可靠地估算建筑能耗需求是必不可少的,然而,为了获得更好的节能方案,需要进行大量的仿真。这项工作的目的是了解机器学习是否可以替代数值模拟,加速建筑设计过程,并评估特定建筑元素的发生率。对监督回归模型进行了训练,并在一个农业建筑案例研究的数千个模拟数据集中进行了测试。其中,基于树的极端梯度增强算法表现出最好的性能。使用SHAP和特征重要性对模型可解释性进行了研究,这对于帮助学者和专业人员为新建筑和改造干预措施制定更好的设计策略至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulations in agricultural buildings: a machine learning approach to forecast seasonal energy need
A fast and reliable estimation of building energy need is essential in agricultural building design, nonetheless, a large number of simulations is required to obtain better energy saving solutions. The aim of this work is to understand if machine learning can substitute numerical simulations and speed up the building design process and assess the incidence of specific architectural elements. Supervised regression models has been trained and tested in a data-set of thousands simulations performed on a case-study agricultural building. Among the algorithms, the tree-based Extreme Gradient Boosting showed the best performance. A study on model explainability has been carried out using SHAP and features importance, which is fundamental to help academics and professionals devise better design strategies for both new constructions and retrofitting interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of dairy cattle slurry for biogas production and nitrogen recovery The efficiency of digestate as inoculum for in vitro digestibility of feeds Ion Mobility Spectrometry for Rapid HEMP Potency Testing - spectrometric testing of technical hemp A customizable and use friendly R package to process big data from the Tree Talker system Benefits of using production factors in assessing farm risk: a simulation on the role of irrigation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1