基于强化学习的双备用电池EH-WSNs路由

T. Zhao, Luyao Wang, Kwan-Wu Chin
{"title":"基于强化学习的双备用电池EH-WSNs路由","authors":"T. Zhao, Luyao Wang, Kwan-Wu Chin","doi":"10.1145/3404555.3404569","DOIUrl":null,"url":null,"abstract":"This paper considers an Energy Harvesting Wireless Sensor Network (EH-WSN) where nodes have a dual alternative battery system. We propose a stateless distributed reinforcement learning based routing algorithm, named QLRA, where each node learns the best next hop(s) to forward its data based on the battery and data information of its neighbors. We study how the number of sources and path exploration probability impacts the performance of QLRA. Numerical results show that after learning, QLRA is able to achieve minimal end-to-end delays in all tested scenarios, which is about 18% lower than the average end-to-end delay of a competing routing algorithm.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reinforcement Learning Based Routing in EH-WSNs with Dual Alternative Batteries\",\"authors\":\"T. Zhao, Luyao Wang, Kwan-Wu Chin\",\"doi\":\"10.1145/3404555.3404569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers an Energy Harvesting Wireless Sensor Network (EH-WSN) where nodes have a dual alternative battery system. We propose a stateless distributed reinforcement learning based routing algorithm, named QLRA, where each node learns the best next hop(s) to forward its data based on the battery and data information of its neighbors. We study how the number of sources and path exploration probability impacts the performance of QLRA. Numerical results show that after learning, QLRA is able to achieve minimal end-to-end delays in all tested scenarios, which is about 18% lower than the average end-to-end delay of a competing routing algorithm.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种能量收集无线传感器网络(EH-WSN),其中节点具有双备用电池系统。我们提出了一种基于无状态分布式强化学习的路由算法,命名为QLRA,其中每个节点根据其邻居的电池和数据信息学习转发其数据的最佳下一跳。我们研究了源数量和路径探索概率对QLRA性能的影响。数值结果表明,经过学习,QLRA能够在所有测试场景中实现最小的端到端延迟,比竞争路由算法的平均端到端延迟低18%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning Based Routing in EH-WSNs with Dual Alternative Batteries
This paper considers an Energy Harvesting Wireless Sensor Network (EH-WSN) where nodes have a dual alternative battery system. We propose a stateless distributed reinforcement learning based routing algorithm, named QLRA, where each node learns the best next hop(s) to forward its data based on the battery and data information of its neighbors. We study how the number of sources and path exploration probability impacts the performance of QLRA. Numerical results show that after learning, QLRA is able to achieve minimal end-to-end delays in all tested scenarios, which is about 18% lower than the average end-to-end delay of a competing routing algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1