测量网络可恢复性的拓扑方法

Zhidong He, Peng Sun, P. Mieghem
{"title":"测量网络可恢复性的拓扑方法","authors":"Zhidong He, Peng Sun, P. Mieghem","doi":"10.1109/RNDM48015.2019.8949119","DOIUrl":null,"url":null,"abstract":"Network recoverability refers to the ability of a network to return to a desired performance level after suffering malicious attacks or random failures. This paper proposes a general topological approach and recoverability indicators to measure the network recoverability in two scenarios: 1) recovery of damaged connections and 2) any disconnected pair of nodes can be connected to each other. Our approach presents the effect of the random attack and recovery processes on the network performance by the robustness envelopes of realizations and the histograms of two recoverability indicators. By applying the effective graph resistance and the network efficiency as robustness metrics, we employ the proposed approach to assess 10 realworld communication networks. Numerical results verify that the network recoverability is coupled to the network topology, the robustness metric and the recovery strategy. We also show that a greedy recovery strategy could provide a near-optimal recovery performance for the investigated robustness metrics.","PeriodicalId":120852,"journal":{"name":"2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Topological Approach to Measure Network Recoverability\",\"authors\":\"Zhidong He, Peng Sun, P. Mieghem\",\"doi\":\"10.1109/RNDM48015.2019.8949119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network recoverability refers to the ability of a network to return to a desired performance level after suffering malicious attacks or random failures. This paper proposes a general topological approach and recoverability indicators to measure the network recoverability in two scenarios: 1) recovery of damaged connections and 2) any disconnected pair of nodes can be connected to each other. Our approach presents the effect of the random attack and recovery processes on the network performance by the robustness envelopes of realizations and the histograms of two recoverability indicators. By applying the effective graph resistance and the network efficiency as robustness metrics, we employ the proposed approach to assess 10 realworld communication networks. Numerical results verify that the network recoverability is coupled to the network topology, the robustness metric and the recovery strategy. We also show that a greedy recovery strategy could provide a near-optimal recovery performance for the investigated robustness metrics.\",\"PeriodicalId\":120852,\"journal\":{\"name\":\"2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RNDM48015.2019.8949119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RNDM48015.2019.8949119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

网络可恢复性是指网络在遭受恶意攻击或随机故障后恢复到预期性能水平的能力。本文提出了一种通用的拓扑方法和可恢复性指标来衡量网络在两种情况下的可恢复性:1)损坏连接的恢复和2)任何断开的节点对可以相互连接。我们的方法通过实现的鲁棒性包络和两个可恢复性指标的直方图来展示随机攻击和恢复过程对网络性能的影响。通过应用有效图阻力和网络效率作为鲁棒性指标,我们采用所提出的方法评估了10个现实世界的通信网络。数值结果验证了网络可恢复性与网络拓扑结构、鲁棒性度量和恢复策略是耦合的。我们还证明了贪婪恢复策略可以为所研究的鲁棒性指标提供接近最优的恢复性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological Approach to Measure Network Recoverability
Network recoverability refers to the ability of a network to return to a desired performance level after suffering malicious attacks or random failures. This paper proposes a general topological approach and recoverability indicators to measure the network recoverability in two scenarios: 1) recovery of damaged connections and 2) any disconnected pair of nodes can be connected to each other. Our approach presents the effect of the random attack and recovery processes on the network performance by the robustness envelopes of realizations and the histograms of two recoverability indicators. By applying the effective graph resistance and the network efficiency as robustness metrics, we employ the proposed approach to assess 10 realworld communication networks. Numerical results verify that the network recoverability is coupled to the network topology, the robustness metric and the recovery strategy. We also show that a greedy recovery strategy could provide a near-optimal recovery performance for the investigated robustness metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Efficient Dynamic Routing in Spectrally-Spatially Flexible Optical Networks Resilient Wheel-Based Optical Access Network Architecture FRADIR-II: An Improved Framework for Disaster Resilience Modeling Technological Interdependency in IoT - A Multidimensional and Multilayer Network Model for Smart Environments A RMSA Algorithm Resilient to Multiple Node Failures on Elastic Optical Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1