发展中国家持续定期停电的需求侧预测方法

Takuma Kogo, Shin Nakamura, S. Pravinraj, B. Arumugam
{"title":"发展中国家持续定期停电的需求侧预测方法","authors":"Takuma Kogo, Shin Nakamura, S. Pravinraj, B. Arumugam","doi":"10.1109/ISGTEUROPE.2014.7028935","DOIUrl":null,"url":null,"abstract":"Irregularity of scheduled power-cut induces consumer's inefficient activity and therefore the consumer expects to know power-cut occurrence in advance. This paper proposes 3-heuristics which enable consumers to predict starttime of power-cuts for next day: SBP (Start-time of power-cut Based Prediction) using historical power-cut start-time data, FBP (Frequency Based Prediction) using historical frequency fluctuation data and ADSP (Adaptive Data Selection Prediction) which is a hybrid exploiting advantages of SBP/FBP with appropriate data period for overcoming changes of power-cut pattern. The evaluation results with power data of Chennai India showed that SBP totally achieved higher prediction success ratio than FBP and SBP has the advantage on regular power-cut pattern instead FBP has the same on the irregulars. Data period to maximize prediction success ratio depends on power-cut pattern as for SBP/FBP. The highest prediction success ratio was marked by ADSP which adaptively combined start-time/frequency data and determined data period on the basis of power-cuts pattern.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A demand side prediction method for persistent scheduled power-cuts in developing countries\",\"authors\":\"Takuma Kogo, Shin Nakamura, S. Pravinraj, B. Arumugam\",\"doi\":\"10.1109/ISGTEUROPE.2014.7028935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irregularity of scheduled power-cut induces consumer's inefficient activity and therefore the consumer expects to know power-cut occurrence in advance. This paper proposes 3-heuristics which enable consumers to predict starttime of power-cuts for next day: SBP (Start-time of power-cut Based Prediction) using historical power-cut start-time data, FBP (Frequency Based Prediction) using historical frequency fluctuation data and ADSP (Adaptive Data Selection Prediction) which is a hybrid exploiting advantages of SBP/FBP with appropriate data period for overcoming changes of power-cut pattern. The evaluation results with power data of Chennai India showed that SBP totally achieved higher prediction success ratio than FBP and SBP has the advantage on regular power-cut pattern instead FBP has the same on the irregulars. Data period to maximize prediction success ratio depends on power-cut pattern as for SBP/FBP. The highest prediction success ratio was marked by ADSP which adaptively combined start-time/frequency data and determined data period on the basis of power-cuts pattern.\",\"PeriodicalId\":299515,\"journal\":{\"name\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEUROPE.2014.7028935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

计划停电的不规律导致消费者的低效活动,因此消费者期望提前知道停电的发生。本文提出了3种启发式方法,使消费者能够预测第二天的断电开始时间:利用历史断电开始时间数据的断电开始时间预测(SBP),利用历史频率波动数据的基于频率的预测(FBP)和ADSP(自适应数据选择预测),它是利用SBP/FBP的优点,通过适当的数据周期来克服断电模式的变化。利用印度钦奈的电力数据评价结果表明,SBP的预测成功率总体高于FBP,并且SBP在规则停电模式上具有优势,而FBP在不规则停电模式上具有优势。最大预测成功率的数据周期取决于断电模式,如SBP/FBP。预测成功率最高的是基于断电模式自适应组合启动时间/频率数据和确定数据周期的ADSP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A demand side prediction method for persistent scheduled power-cuts in developing countries
Irregularity of scheduled power-cut induces consumer's inefficient activity and therefore the consumer expects to know power-cut occurrence in advance. This paper proposes 3-heuristics which enable consumers to predict starttime of power-cuts for next day: SBP (Start-time of power-cut Based Prediction) using historical power-cut start-time data, FBP (Frequency Based Prediction) using historical frequency fluctuation data and ADSP (Adaptive Data Selection Prediction) which is a hybrid exploiting advantages of SBP/FBP with appropriate data period for overcoming changes of power-cut pattern. The evaluation results with power data of Chennai India showed that SBP totally achieved higher prediction success ratio than FBP and SBP has the advantage on regular power-cut pattern instead FBP has the same on the irregulars. Data period to maximize prediction success ratio depends on power-cut pattern as for SBP/FBP. The highest prediction success ratio was marked by ADSP which adaptively combined start-time/frequency data and determined data period on the basis of power-cuts pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete elastic residential load response under variable pricing schemes Challenges in utilisation of demand side response for operating reserve provision Managing energy in time and space in smart grids using TRIANA Optimal scheduling of electrical vehicle charging under two types of steering signals A design-driven approach for developing new products for smart grid households
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1