{"title":"软件时序分析采用软硬件协同仿真和指令集模拟器","authors":"Jie Liu, M. Lajolo, A. Sangiovanni-Vincentelli","doi":"10.1109/HSC.1998.666239","DOIUrl":null,"url":null,"abstract":"Timing analysis for checking satisfaction of constraints is a crucial problem in real-time system design. In some current approaches, the delay of software modules is precalculated by a software performance estimation method, which is not accurate enough for hard real-time systems and complicated designs. In this paper we present an approach to integrate a clock-cycle-accurate instruction set simulator (ISS) with a fast event-based system simulator. By using the ISS, the delay of events can be measured instead of estimated. An interprocess communication architecture and a simple protocol are designed to meet the requirement of robustness and flexibility. A cached refinement scheme is presented to improve the performance at the expense of accuracy. The scheme is especially effective for applications in which the delay of basic blocks is approximately data-independent. We also discuss the implementation issues by using the Ptolemy simulation environment and the ST20 simulator as an example.","PeriodicalId":269781,"journal":{"name":"Proceedings of the Sixth International Workshop on Hardware/Software Codesign. (CODES/CASHE'98)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Software timing analysis using HW/SW cosimulation and instruction set simulator\",\"authors\":\"Jie Liu, M. Lajolo, A. Sangiovanni-Vincentelli\",\"doi\":\"10.1109/HSC.1998.666239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timing analysis for checking satisfaction of constraints is a crucial problem in real-time system design. In some current approaches, the delay of software modules is precalculated by a software performance estimation method, which is not accurate enough for hard real-time systems and complicated designs. In this paper we present an approach to integrate a clock-cycle-accurate instruction set simulator (ISS) with a fast event-based system simulator. By using the ISS, the delay of events can be measured instead of estimated. An interprocess communication architecture and a simple protocol are designed to meet the requirement of robustness and flexibility. A cached refinement scheme is presented to improve the performance at the expense of accuracy. The scheme is especially effective for applications in which the delay of basic blocks is approximately data-independent. We also discuss the implementation issues by using the Ptolemy simulation environment and the ST20 simulator as an example.\",\"PeriodicalId\":269781,\"journal\":{\"name\":\"Proceedings of the Sixth International Workshop on Hardware/Software Codesign. (CODES/CASHE'98)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Workshop on Hardware/Software Codesign. (CODES/CASHE'98)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSC.1998.666239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Workshop on Hardware/Software Codesign. (CODES/CASHE'98)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSC.1998.666239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software timing analysis using HW/SW cosimulation and instruction set simulator
Timing analysis for checking satisfaction of constraints is a crucial problem in real-time system design. In some current approaches, the delay of software modules is precalculated by a software performance estimation method, which is not accurate enough for hard real-time systems and complicated designs. In this paper we present an approach to integrate a clock-cycle-accurate instruction set simulator (ISS) with a fast event-based system simulator. By using the ISS, the delay of events can be measured instead of estimated. An interprocess communication architecture and a simple protocol are designed to meet the requirement of robustness and flexibility. A cached refinement scheme is presented to improve the performance at the expense of accuracy. The scheme is especially effective for applications in which the delay of basic blocks is approximately data-independent. We also discuss the implementation issues by using the Ptolemy simulation environment and the ST20 simulator as an example.