{"title":"鲁棒神经网络滤波在智能接口构建中的应用","authors":"A. Vasiliev, A. Melnikov, S. Lesko","doi":"10.32362/2500-316x-2023-11-2-7-19","DOIUrl":null,"url":null,"abstract":"Objectives. In recent years, there has been growing scientific interest in the creation of intelligent interfaces for computer control based on biometric data, such as electromyography signals (EMGs), which can be used to classify human hand gestures to form the basis for organizing an intuitive human-computer interface. However, problems arising when using EMG signals for this purpose include the presence of nonlinear noise in the signal and the significant influence of individual human characteristics. The aim of the present study is to investigate the possibility of using neural networks to filter individual components of the EMG signal.Methods. Mathematical signal processing techniques are used along with machine learning methods.Results. The overview of the literature on the topic of EMG signal processing is carried out. The concept of intelligent processing of biological signals is proposed. The signal filtering model using a convolutional neural network structure based on Python 3, TensorFlow and Keras technologies was developed. Results of an experiment carried out on an EMG data set to filter individual signal components are presented and discussed.Conclusions. The possibility of using artificial neural networks to identify and suppress individual human characteristics in biological signals is demonstrated. When training the network, the main emphasis was placed on individual features by testing the network on data received from subjects not involved in the learning process. The achieved average 5% reduction in individual noise will help to avoid retraining of the network when classifying EMG signals, as well as improving the accuracy of gesture classification for new users.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust neural network filtering in the tasks of building intelligent interfaces\",\"authors\":\"A. Vasiliev, A. Melnikov, S. Lesko\",\"doi\":\"10.32362/2500-316x-2023-11-2-7-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. In recent years, there has been growing scientific interest in the creation of intelligent interfaces for computer control based on biometric data, such as electromyography signals (EMGs), which can be used to classify human hand gestures to form the basis for organizing an intuitive human-computer interface. However, problems arising when using EMG signals for this purpose include the presence of nonlinear noise in the signal and the significant influence of individual human characteristics. The aim of the present study is to investigate the possibility of using neural networks to filter individual components of the EMG signal.Methods. Mathematical signal processing techniques are used along with machine learning methods.Results. The overview of the literature on the topic of EMG signal processing is carried out. The concept of intelligent processing of biological signals is proposed. The signal filtering model using a convolutional neural network structure based on Python 3, TensorFlow and Keras technologies was developed. Results of an experiment carried out on an EMG data set to filter individual signal components are presented and discussed.Conclusions. The possibility of using artificial neural networks to identify and suppress individual human characteristics in biological signals is demonstrated. When training the network, the main emphasis was placed on individual features by testing the network on data received from subjects not involved in the learning process. The achieved average 5% reduction in individual noise will help to avoid retraining of the network when classifying EMG signals, as well as improving the accuracy of gesture classification for new users.\",\"PeriodicalId\":282368,\"journal\":{\"name\":\"Russian Technological Journal\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2500-316x-2023-11-2-7-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2500-316x-2023-11-2-7-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust neural network filtering in the tasks of building intelligent interfaces
Objectives. In recent years, there has been growing scientific interest in the creation of intelligent interfaces for computer control based on biometric data, such as electromyography signals (EMGs), which can be used to classify human hand gestures to form the basis for organizing an intuitive human-computer interface. However, problems arising when using EMG signals for this purpose include the presence of nonlinear noise in the signal and the significant influence of individual human characteristics. The aim of the present study is to investigate the possibility of using neural networks to filter individual components of the EMG signal.Methods. Mathematical signal processing techniques are used along with machine learning methods.Results. The overview of the literature on the topic of EMG signal processing is carried out. The concept of intelligent processing of biological signals is proposed. The signal filtering model using a convolutional neural network structure based on Python 3, TensorFlow and Keras technologies was developed. Results of an experiment carried out on an EMG data set to filter individual signal components are presented and discussed.Conclusions. The possibility of using artificial neural networks to identify and suppress individual human characteristics in biological signals is demonstrated. When training the network, the main emphasis was placed on individual features by testing the network on data received from subjects not involved in the learning process. The achieved average 5% reduction in individual noise will help to avoid retraining of the network when classifying EMG signals, as well as improving the accuracy of gesture classification for new users.